Abstract

Predictive-based power control has been widely recognized as a promising approach to boost driving range and improve system-level energy efficiency for electric vehicles (EVs), in which vehicle velocity forecasting generally serves as a preliminary input to optimally schedule the operations of varying onboard electrical and thermal systems. A segment-based velocity forecasting approach for individual commuting vehicles developed in this study reveals that it is challenging to forecast the velocity at intersection segments only using the velocity data. To address this challenge, this study seeks to develop a YOLO-V2-based object detection deep network to recognize the traffic lights in advance and leverage the detected signals to establish a forecasting model that integrates with the probability-based hybrid forecasting approach. The case study results show that the traffic light detection-based forecasting model can significantly improve the forecasting accuracy for intersection segments. Based on the forecasting velocity 5–15 s ahead, the effectiveness of model predictive control-based energy management strategy is further evaluated with a liquid-based battery thermal control system. The proposed battery thermal management system (BTMS) model shows promising results in maintaining battery temperature within an appropriate range, thus improving the overall energy efficiency of the EV. Moreover, a traffic light-based real-time energy management framework is developed to directly control the power demand from the air conditioning (AC) system.

References

1.
Un-Noor
,
F.
,
Padmanaban
,
S.
,
Mihet-Popa
,
L.
,
Mollah
,
M. N.
, and
Hossain
,
E.
,
2017
, “
A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development
,”
Energies
,
10
(
8
), p.
1217
.
2.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy.
,
148
, pp.
403
409
.
3.
Liu
,
Y.
, and
Zhang
,
J.
,
2019
, “
Design a J-Type Air-Based Battery Thermal Management System Through Surrogate-Based Optimization
,”
Appl. Energy.
,
252
, p.
113426
.
4.
Zhuang
,
W.
,
Liu
,
Z.
,
Su
,
H.
, and
Chen
,
G.
,
2021
, “
An Intelligent Thermal Management System for Optimized Lithium-Ion Battery Pack
,”
Appl. Therm. Eng.
,
189
, p.
116767
.
5.
Widyantara
,
R. D.
,
Naufal
,
M. A.
,
Sambegoro
,
P. L.
,
Nurprasetio
,
I. P.
,
Triawan
,
F.
,
Djamari
,
D. W.
,
Nandiyanto
,
A. B. D.
,
Budiman
,
B. A.
, and
Aziz
,
M.
,
2021
, “
Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle
,”
Energies
,
14
(
23
), p.
7954
.
6.
Wang
,
X.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2018
, “
Multidisciplinary and Multifidelity Design Optimization of Electric Vehicle Battery Thermal Management System
,”
ASME J. Mech. Des.
,
140
(
9
), p.
094501
.
7.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-McPherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Cabin and Battery Thermal Management of Connected and Automated HEVs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1711
1726
.
8.
Tang
,
X.
,
Guo
,
Q.
,
Li
,
M.
,
Wei
,
C.
,
Pan
,
Z.
, and
Wang
,
Y.
,
2021
, “
Performance Analysis on Liquid-Cooled Battery Thermal Management for Electric Vehicles Based on Machine Learning
,”
J. Power. Sources.
,
494
, p.
229727
.
9.
Park
,
S.
, and
Ahn
,
C.
,
2021
, “
Model Predictive Control With Stochastically Approximated Cost-to-Go for Battery Cooling System of Electric Vehicles
,”
IEEE Trans. Vehicular Technol.
,
70
(
5
), pp.
4312
4323
.
10.
Zhao
,
S.
, and
Mi
,
C. C.
,
2021
, “
A Two-Stage Real-time Optimized EV Battery Cooling Control Based on Hierarchical and Iterative Dynamic Programming and MPC
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
8
), pp.
11677
11687
.
11.
Zhang
,
X.
,
Kong
,
X.
,
Li
,
G.
, and
Li
,
J.
,
2014
, “
Thermodynamic Assessment of Active Cooling/Heating Methods for Lithium-Ion Batteries of Electric Vehicles in Extreme Conditions
,”
Energy
,
64
, pp.
1092
1101
.
12.
Huo
,
Y.
, and
Rao
,
Z.
,
2017
, “
Investigation of Phase Change Material Based Battery Thermal Management at Cold Temperature Using Lattice Boltzmann Method
,”
Energy. Convers. Manage.
,
133
, pp.
204
215
.
13.
Yang
,
Z.
,
Mamun
,
A.-A.
,
Makam
,
S.
, and
Okma
,
C.
,
2020
, “An Empirical Aging Model for Lithium-Ion Battery and Validation Using Real-Life Driving Scenarios,” Technical Report, SAE Technical Paper, Report No. 2020-01-0449.
14.
Bi
,
Y.
,
Yin
,
Y.
, and
Choe
,
S.-Y.
,
2020
, “
Online State of Health and Aging Parameter Estimation Using a Physics-Based Life Model With a Particle Filter
,”
J. Power. Sources.
,
476
, p.
228655
.
15.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy. Convers. Manage.
,
150
, pp.
304
330
.
16.
Amini
,
M. R.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Hierarchical MPC for Robust Eco-Cooling of Connected and Automated Vehicles and Its Application to Electric Vehicle Battery Thermal Management
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
316
328
.
17.
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
Electric Vehicle Battery Thermal and Cabin Climate Management Based on Model Predictive Control
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031705
.
18.
Piao
,
X.
,
Wang
,
X.
, and
Han
,
K.
,
2021
, “
Hierarchical Model Predictive Control for Optimization of Vehicle Speed and Battery Thermal Using Vehicle Connectivity
,”
IEEE Access
,
9
, p.
141378
.
19.
Wu
,
J.
,
Wei
,
Z.
,
Liu
,
K.
,
Quan
,
Z.
, and
Li
,
Y.
,
2020
, “
Battery-Involved Energy Management for Hybrid Electric Bus Based on Expert-Assistance Deep Deterministic Policy Gradient Algorithm
,”
IEEE Trans. Vehicular Technol.
,
69
(
11
), pp.
12786
12796
.
20.
Xu
,
D.
,
Zheng
,
C.
,
Cui
,
Y.
,
Fu
,
S.
,
Kim
,
N.
, and
Cha
,
S. W.
,
2022
, “
Recent Progress in Learning Algorithms Applied in Energy Management of Hybrid Vehicles: A Comprehensive Review
,”
Int. J. Precision Eng. Manuf.-Green Technol.
,
10
(
1
), pp.
1
23
.
21.
Ehsani
,
M.
,
Singh
,
K. V.
,
Bansal
,
H. O.
, and
Mehrjardi
,
R. T.
,
2021
, “
State of the Art and Trends in Electric and Hybrid Electric Vehicles
,”
Proc. IEEE
,
109
(
6
), pp.
967
984
.
22.
Amini
,
M. R.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2021
, “
Hierarchical MPC for Robust Eco-Cooling of Connected and Automated Vehicles and Its Application to Electric Vehicle Battery Thermal Management
,”
IEEE Trans. Control Syst. Technol.
,
29
(
1
), pp.
316
328
.
23.
Jing
,
J.
,
Filev
,
D.
,
Kurt
,
A.
,
Özatay
,
E.
,
Michelini
,
J.
, and
Özgüner
,
Ü.
,
2017
, “
Vehicle Speed Prediction Using a Cooperative Method of Fuzzy Markov Model and Auto-Regressive Model
,”
2017 IEEE Intelligent Vehicles Symposium (IV)
,
Redondo Beach, CA
,
June 11–14
, IEEE, pp.
881
886
.
24.
Zhou
,
Y.
,
Ravey
,
A.
, and
Pera
,
M.-C.
,
2019
, “
A Velocity Prediction Method Based on Self-learning Multi-step Markov Chain
,”
IECON 2019 45th Annual Conference of the IEEE Industrial Electronics Society
,
Lisbon, Portugal
,
Oct. 14–17
,
IEEE
, Vol. 1, pp.
2598
2603
.
25.
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
A Repeated Commuting Driving Cycle Dataset With Application to Short-Term Vehicle Velocity Forecasting
,”
J. Auton. Vehicles Syst.
,
1
(
3
), p.
031002
.
26.
Sun
,
C.
,
Hu
,
X.
,
Moura
,
S. J.
, and
Sun
,
F.
,
2014
, “
Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
1197
1204
.
27.
Liu
,
K.
,
Asher
,
Z.
,
Gong
,
X.
,
Huang
,
M.
, and
Kolmanovsky
,
I.
,
2019
, “Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning,” Technical Report, SAE Technical Paper, Report No. 2019-01-1051.
28.
Shen
,
H.
,
Wang
,
Z.
,
Zhou
,
X.
,
Lamantia
,
M.
,
Yang
,
K.
,
Chen
,
P.
, and
Wang
,
J.
,
2022
, “
Electric Vehicle Velocity and Energy Consumption Predictions Using Transformer and Markov-Chain Monte Carlo
,”
IEEE Trans. Transp. Electrification
,
8
(
3
), pp.
3836
3847
.
29.
Lemieux
,
J.
, and
Ma
,
Y.
,
2015
, “
Vehicle Speed Prediction Using Deep Learning
,”
2015 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Montreal, QC, Canada
,
Oct. 19–22
, pp.
1
5
.
30.
Moser
,
D.
,
Waschl
,
H.
,
Schmied
,
R.
,
Efendic
,
H.
, and
del Re
,
L.
,
2015
, “
Short Term Prediction of a Vehicle’s Velocity Trajectory Using ITS
,”
SAE Int. J. Passenger Cars-Electron. Electr. Syst.
,
8
, pp.
364
370
.
31.
Zhang
,
F.
,
Xi
,
J.
, and
Langari
,
R.
,
2016
, “
Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
2
), pp.
416
430
.
32.
Shin
,
J.
,
Yeon
,
K.
,
Kim
,
S.
,
Sunwoo
,
M.
, and
Han
,
M.
,
2021
, “
Comparative Study of Markov Chain With Recurrent Neural Network for Short Term Velocity Prediction Implemented on an Embedded System
,”
IEEE Access
,
9
, pp.
24755
24767
.
33.
NCTCG
, “
Government Report Transportation System Management
,” https://www.nctcog.org/trans/manage/its/transportation-systems-management, Accessed December 15, 2023.
34.
Jiao
,
L.
,
Zhang
,
F.
,
Liu
,
F.
,
Yang
,
S.
,
Li
,
L.
,
Feng
,
Z.
, and
Qu
,
R.
,
2019
, “
A Survey of Deep Learning-Based Object Detection
,”
IEEE Access
,
7
, pp.
128837
128868
.
35.
Yoneda
,
K.
,
Kuramoto
,
A.
,
Suganuma
,
N.
,
Asaka
,
T.
,
Aldibaja
,
M.
, and
Yanase
,
R.
,
2020
, “
Robust Traffic Light and Arrow Detection Using Digital Map With Spatial Prior Information for Automated Driving
,”
Sensors
,
20
(
4
), p.
1181
.
36.
Yang
,
Z.
,
Patil
,
D.
, and
Fahimi
,
B.
,
2018
, “
Online Estimation of Capacity Fade and Power Fade of Lithium-Ion Batteries Based on Input–Output Response Technique
,”
IEEE Trans. Transp. Electrification
,
4
(
1
), pp.
147
156
.
37.
Yang
,
Z.
,
Patil
,
D.
, and
Fahimi
,
B.
,
2019
, “
Electrothermal Modeling of Lithium-Ion Batteries for Electric Vehicles
,”
IEEE Trans. Vehicular Technol.
,
68
(
1
), pp.
170
179
.
38.
Huynh
,
T. A.
, and
Hsieh
,
M.-F.
,
2018
, “
Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles
,”
Energies
,
11
(
6
), p.
1385
.
39.
Lajunen
,
A.
,
Yang
,
Y.
, and
Emadi
,
A.
,
2020
, “
Review of Cabin Thermal Management for Electrified Passenger Vehicles
,”
IEEE Trans. Vehicular Technol.
,
69
(
6
), pp.
6025
6040
.
40.
He
,
H.
,
Jia
,
H.
,
Sun
,
C.
, and
Sun
,
F.
,
2018
, “
Stochastic Model Predictive Control of Air Conditioning System for Electric Vehicles: Sensitivity Study, Comparison, and Improvement
,”
IEEE Trans. Ind. Inform.
,
14
(
9
), pp.
4179
4189
.
41.
Pino
,
F. J.
,
Marcos
,
D.
,
Bordons
,
C.
, and
Rosa
,
F.
,
2015
, “
Car Air-Conditioning Considerations on Hydrogen Consumption in Fuel Cell and Driving Limitations
,”
Int. J. Hydrogen. Energy.
,
40
(
35
), pp.
11696
11703
.
42.
Kiss
,
T.
,
Chaney
,
L.
, and
Meyer
,
J.
,
2013
, “New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink,”
National Renewable Energy Lab (NREL)
,
Golden, CO
, Technical Report, Report No. 2013-01-0850.
43.
Zhang
,
Z.
,
Li
,
W.
,
Shi
,
J.
, and
Chen
,
J.
,
2016
, “
A Study on Electric Vehicle Heat Pump Systems in Cold Climates
,”
Energies
,
9
(
11
), p.
881
.
44.
Shen
,
M.
, and
Gao
,
Q.
,
2020
, “
System Simulation on Refrigerant-Based Battery Thermal Management Technology for Electric Vehicles
,”
Energy. Convers. Manage.
,
203
, p.
112176
.
45.
Rao
,
Z.
,
Wang
,
Q.
, and
Huang
,
C.
,
2016
, “
Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Management System
,”
Appl. Energy.
,
164
, pp.
659
669
.
46.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable. Sustainable. Energy. Rev.
,
13
(
2
), pp.
318
345
.
You do not currently have access to this content.