Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This study presents a control strategy employing a hybrid backstepping and sliding mode control (BSMC) approach for automated platoons. The control scheme integrates an exponential spacing policy tailored to varying driving conditions and vehicle constraints. We introduce an interval type-2 fuzzy logic system (IT2FLS) to approximate the unknown nonlinear driving resistance term. This technique yields interval outputs, incorporating uncertain mean and standard deviation in the membership functions of inputs, thereby enhancing the system’s adaptability. We include a prescribed performance control using an asymmetric prescribed performance function to ensure string stability and confine spacing errors within a desired range. This technique eliminates the need for complex Laplace transform computations to check string stability. To validate the robustness of the proposed controller, we conduct simulations under fault and fault-free conditions, demonstrating the efficacy of the proposed approach.

References

1.
Gao
,
Z.
,
Wang
,
J.
,
Dong
,
J.
, and
Chen
,
L.
,
2019
, “
Traffic Oscillations Mitigation in Vehicle Platoon Using a Car Following Control Model for Connected and Autonomous Vehicle
,”
J. Adv. Transp.
,
2019
(
1
), pp.
1
12
.
2.
Negash
,
N. M.
, and
Yang
,
J.
,
2023
, “
Driver Behavior Modeling Toward Autonomous Vehicles: Comprehensive Review
,”
IEEE Access
,
11
, pp.
22788
22821
. .
3.
Zhang
,
L.
,
Chen
,
F.
,
Ma
,
X.
, and
Pan
,
X.
,
2020
, “
Fuel Economy in Truck Platooning: A Literature Overview and Directions for Future Research
,”
J. Adv. Transp.
,
2020
(
1
), pp.
1
10
.
4.
Chen
,
J.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2019
, “
Effects of ACC and CACC Vehicles on Traffic Flow Based on an Improved Variable Time Headway Spacing Strategy
,”
IET Intell. Transp. Syst.
,
13
(
9
), pp.
1365
1373
.
5.
Lee
,
S.
,
Oh
,
C.
, and
Lee
,
G.
,
2019
, “
Impact of Automated Truck Platooning on the Performance of Freeway Mixed Traffic Flow
,”
J. Adv. Transp.
,
2021
(
1
), pp.
1
13
.
6.
Feng
,
S.
,
Zhang
,
Y.
,
Li
,
S.
,
Cao
,
Z.
,
Liu
,
H.
, and
Li
,
L.
,
2019
, “
String Stability for Vehicular Platoon Control: Definitions and Analysis
,”
Annu. Rev. Control
,
47
, pp.
81
97
. .
7.
Darbha
,
S.
,
Konduri
,
S.
, and
Pagilla
,
P.
,
2018
, “
Benefits of V2V Communication for Autonomous and Connected Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
5
), pp.
1954
1963
.
8.
Song
,
J.
, and
Ju
,
Y.
,
2020
, “
Distributed Adaptive Sliding Mode Control for Vehicle Platoon With Uncertain Driving Resistance and Actuator Saturation
,”
Complexity
,
2020
(
1
), pp.
1
12
.
9.
Guo
,
G.
, and
Li
,
D.
,
2019
, “
Adaptive Sliding Mode Control of Vehicular Platoons With Prescribed Tracking Performance
,”
IEEE Trans. Veh. Technol.
,
68
(
8
), pp.
7511
7520
.
10.
Swaroop
,
D.
, and
Rajagopal
,
K.
,
2001
, “
A Review of Constant Time Headway Policy for Automatic Vehicle Following
,” 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585), pp.
65
69
, Paper No. 0-7803-7194-1.
11.
Guo
,
L.
,
Ge
,
P.
, and
Sun
,
D.
,
2020
, “
Variable Time Headway Autonomous Emergency Braking Control Algorithm Based on Model Predictive Con- Trol
,” 2020 Chinese Automation Congress (CAC), pp.
1794
1798
, Paper No. 20400146.
12.
Zhao
,
Q.
,
Zheng
,
H.
,
Kaku
,
C.
,
Cheng
,
F.
, and
Zong
,
C.
,
2023
, “
Safety Spacing Control of Truck Platoon Based on Emergency Braking Under Different Road Conditions
,”
SAE Int. J. Veh. Dyn. Stab. NVH
,
7
(
1
), pp.
69
81
.
13.
Orosz
,
G.
,
2016
, “
Connected Cruise Control: Modelling, Delay Effects, and Nonlinear Behaviour
,”
Veh. Syst. Dyn.
,
54
(
8
), pp.
147
1176
.
14.
Sungu
,
H.
,
Inoue
,
M.
, and
Imura
,
I.
,
2015
, “
Nonlinear Spacing Policy Based Vehicle Platoon Control for Local String Stability and Global Traffic Flow Stability
,” 2015 European Control Conference (ECC), pp.
3396
3401
, Paper No. 15603914.
15.
Ge
,
J.
, and
Orosz
,
G.
,
2017
, “
Optimal Control of Connected Vehicle Systems With Communication Delay and Driver Reaction Time
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
8
), pp.
2056
2070
.
16.
Xu
,
L.
,
Zhuang
,
W.
,
Yin
,
G.
, and
Bian
,
C.
,
2018
, “
Stable Longitudinal Control of Heterogeneous Vehicular Platoon With Disturbances and Information Delays
,”
IEEE Access
,
6
, pp.
69794
69806
. .
17.
Ma
,
G.
,
2021
, “
Robust Control and Optimization for Autonomous and Connected Vehicle Platoons With Vehicle-to-Vehicle Communication Delay
,”
J. Transp. Eng. Part A: Syst.
,
147
(
8
), p.
04021042
.
18.
Hu
,
J.
,
Bhowmick
,
P.
,
Arvin
,
F.
,
Lanzon
,
A.
, and
Lennox
,
B.
,
2020
, “
Cooperative Control of Heterogeneous Connected Vehicle Platoons: An Adaptive Leader-Following Approach
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
977
984
.
19.
Wang
,
P.
,
Deng
,
H.
,
Zhang
,
J.
,
Zhang
,
M.
, and
Li
,
Y.
,
2021
, “
Model Predictive Control for Connected Vehicle Platoon Under Switching Communication Topology
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
7
), pp.
7817
7830
.
20.
Yan
,
M.
,
Ma
,
W.
,
Zuo
,
L.
, and
Yang
,
P.
,
2020
, “
Distributed Model Predictive Control for Platooning of Heterogeneous Vehicles With Multiple Constraints and Communication Delays
,”
J. Adv. Transp.
,
2020
(
1
), pp.
1
16
.
21.
Xia
,
Q.
,
Gao
,
F.
,
Duan
,
J.
, and
He
,
Y.
,
2017
, “
Decoupled H Control of Automated Vehicular Platoons With Complex Interaction Topologies
,”
IET Intell. Transp. Syst.
,
11
(
2
), pp.
92
101
.
22.
Zheng
,
Y.
,
Li
,
S.
,
Li
,
K.
, and
Ren
,
W.
,
2018
, “
Platooning of Connected Vehicles With Undirected Topologies: Robustness Analysis and Distributed H-Infinity Controller Synthesis
,”
IEEE Trans. Intell. Transp. Syst.
,
19
(
5
), pp.
1353
1364
.
23.
Negash
,
N. M.
, and
Yang
,
J.
,
2022
, “
Coupled Integral Sliding Mode Control for Bidirectional Automated Platoon With an Exponential Spacing Policy and Uncertainty Approximation
,” Proceedings of the ASME IDETC/CIE, p.
V001T01A005
, Paper No. DETC2022-90810.
24.
Wang
,
W.
,
Han
,
B.
,
Guo
,
Y.
,
Luo
,
X.
, and
Yuan
,
M.
,
2020
, “
Fault-Tolerant Platoon Control of Autonomous Vehicles Based on Event-Triggered Control Strategy
,”
IEEE Access
,
8
, pp.
25122
25134
.
25.
Bansal
,
K.
, and
Mukhija
,
P.
,
2020
, “
Event-Triggered Control of Vehicular Platoon System With Time-Varying Delay and Sensor Faults
,”
J. Autom. Eng.
,
234
(
14
), pp.
3362
3372
.
26.
Prayitno
,
A.
, and
Nilkhamhang
,
I.
,
2021
, “
Distributed Model Reference Adaptive Control for Vehicle Platoons With Uncertain Dynamics
,”
Eng. J.
,
25
(
8
), pp.
3362
3372
.
27.
Peng
,
Y. F.
,
2010
, “
Adaptive Intelligent Backstepping Longitudinal Control of Vehicle Platoons Using Output Recurrent Cerebellar Model Articulation Controller
,”
Expert Syst. Appl.
,
37
(
3
), pp.
2016
2027
.
28.
Chou
,
F. C.
,
Tang
,
S. X.
,
Lu
,
X.
, and
Alexandre
,
B.
,
2019
, “
Backstepping-Based Time-Gap Regulation for Platoons
,” Proceedings of the ACC, p.
V001T01A005
, Paper No. 18954864.
29.
Zhu
,
Y.
,
Wu
,
J.
, and
Su
,
H.
,
2020
, “
V2v-Based Cooperative Control of Uncertain, Disturbed and Constrained Nonlinear CAVS Platoon
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
3
), pp.
1796
1806
.
30.
Kwon
,
J. W.
, and
Chwa
,
D.
,
2014
, “
Adaptive Bidirectional Platoon Control Using a Coupled Sliding Mode Control Method
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
5
), pp.
2040
2048
.
31.
Zuo
,
L.
,
Yan
,
Y.
,
Yan
,
M.
, and
Ma
,
W.
,
2020
, “
Distributed Integral Sliding Mode-Based Nonlinear Vehicle Platoon Control With Quadratic Spacing Policy
,”
Complexity
,
2020
(
1
), pp.
1
9
.
32.
Zheng
,
Y.
,
Li
,
S. E.
,
Wang
,
J.
,
Cao
,
D.
, and
Li
,
K.
,
2016
, “
Stability and Scalability of Homogeneous Vehicular Platoon: Study on the Influence of Information Flow Topologies
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
1
), pp.
1
14
.
33.
Yan
,
M.
,
Song
,
J.
,
Yang
,
P.
, and
Zuo
,
L.
,
2018
, “
Neural Adaptive Sliding-Mode Control of a Bidirectional Vehicle Platoon with Velocity Constraints and Input Saturation
,”
Complexity
,
2018
(
1
), pp.
1
11
.
34.
Guo
,
X.
,
Wang
,
J.
,
Liao
,
F.
, and
Teo
,
R.
,
2018
, “
Neuroadaptive Quantized PID Sliding-Mode Control for Heterogeneous Vehicular Platoon With Unknown Actuator Deadzone
,”
J. Robust Nonlinear Control
,
29
(
1
), pp.
188
208
.
35.
Guo
,
G.
,
Li
,
P.
, and
Hao
,
L.
,
2018
, “
A New Quadratic Spacing Policy and Adaptive Fault-Tolerant Platooning With Actuator Saturation
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
2
), pp.
1200
1212
.
36.
Guo
,
G.
,
Li
,
P.
, and
Hao
,
L.
,
2020
, “
Adaptive Fault-Tolerant Control of Platoons With Guaranteed Traffic Flow Stability
,”
IEEE Trans. Veh. Technol.
,
69
(
7
), pp.
6916
6927
.
37.
Gao
,
Z.
,
Zhang
,
Y.
, and
Guo
,
G.
,
2022
, “
Fixed-Time Prescribed Performance Adaptive Fixed-Time Sliding Mode Control for Vehicular Platoons With Actuator Saturation
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
12
), pp.
24176
24189
.
38.
Guo
,
G.
, and
Li
,
D.
,
2019
, “
Adaptive Sliding Mode Control of Vehicular Platoons With Prescribed Tracking Performance
,”
IEEE Trans. Veh. Technol.
,
68
(
8
), pp.
7511
7520
.
39.
Ghasemi
,
A.
, and
Kazemi
,
R.
,
2013
, “
Stable Decentralized Control of a Platoon of Vehicles With Heterogeneous Information Feedback
,”
IEEE Trans. Veh. Technol.
,
62
(
9
), pp.
4299
4308
.
40.
Li
,
Y.
,
Zhao
,
Y.
, and
Tong
,
S.
,
2019
, “
Adaptive Fuzzy Control for Heterogeneous Vehicular Platoon Systems With Collision Avoidance and Connectivity Preservation
,”
IEEE Trans. Fuzzy Syst.
,
31
(
11
), pp.
3934
3943
.
41.
Wang
,
H.
,
Chen
,
B.
,
Lin
,
C.
,
Sun
,
Y.
, and
Wang
,
F.
,
2017
, “
Adaptive Finite-Time Control for a Class of Uncertain High-Order Non-linear Systems Based on Fuzzy Approximation
,”
IET Control Theory Appl.
,
11
(
5
), pp.
677
684
.
42.
Ge
,
S. S.
, and
Wang
,
C.
,
2004
, “
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems
,”
IEEE Trans. Neural Netw.
,
15
(
3
), pp.
674
692
.
43.
Rajamani
,
R.
,
2008
,
Vehicle Dynamics and Control
,
Springer
,
New York
.
44.
Liang
,
Q.
, and
Mendel
,
J.
,
2000
, “
Interval Type-2 Fuzzy Logic Systems: Theory and Design
,”
IEEE Trans. Fuzzy Syst.
,
8
(
5
), pp.
535
550
.
45.
Chen
,
Y.
, and
Yang
,
J.
,
2021
, “
Study on Center-of-Sets Type-Reduction of Interval Type-2 Fuzzy Logic Systems With Noniterative Algorithms
,”
J. Intell. Fuzzy Syst.
,
40
(
6
), pp.
11099
11106
.
46.
Mendel
,
J. M.
,
2014
, “
General Type-2 Fuzzy Logic Systems Made Simple: A Tutorial
,”
IEEE Trans. Fuzzy Syst.
,
22
(
5
), pp.
1162
1182
.
47.
Nie
,
M.
, and
Tan
,
W. W.
,
2008
, “
Towards an Efficient Type-Reduction Method for Interval Type-2 Fuzzy Logic Systems
,” 2008 IEEE International Conference on Fuzzy Systems, pp.
1425
1432
, Paper No. 10221820.
48.
Zhao
,
K.
, and
Song
,
Y. D.
,
2019
, “
Removing the Feasibility Conditions Imposed on Tracking Control Designs for State-Constrained Strict-Feedback Systems
,”
IEEE Trans. Autom. Control
,
64
(
3
), pp.
1265
1272
.
49.
Zhou
,
S.
, and
Song
,
Y.
,
2021
, “
Prescribed Performance Neuroadaptive Fault-Tolerant Compensation for Mimo Nonlinear Systems Under Extreme Actuator Failures
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
51
(
9
), pp.
5427
5436
.
50.
Zhao
,
K.
,
Song
,
Y.
,
Ma
,
T.
, and
He
,
L.
,
2018
, “
Prescribed Performance Control of Uncertain Euler–Lagrange Systems Subject to Full-State Constraints
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
8
), pp.
3478
3489
.
51.
Xue
,
G.
,
Lin
,
F.
,
Li
,
S.
, and
Liu
,
H.
,
2021
, “
Adaptive Dynamic Surface Control for Finite-Time Tracking of Uncertain Nonlinear Systems With Dead-Zone Inputs and Actuator Faults
,”
Int. J. Control Autom. Syst.
,
19
(
8
), pp.
2797
2811
.
52.
Ba
,
K.
,
Yu
,
B.
,
Liu
,
Y.
,
Jin
,
Z.
,
Gao
,
Z.
,
Zhang
,
J.
, and
Kong
,
X.
,
2020
, “
Fuzzy Terminal Sliding Mode Control With Compound Reaching Law and Time Delay Estimation for HDU of Legged Robot
,”
Complexity
,
2020
(
1
), pp.
1
16
.
53.
Lai
,
G.
,
Zhang
,
Y.
,
Liu
,
Z.
, and
Chen
,
C. L. P.
,
2019
, “
Indirect Adaptive Fuzzy Control Design With Guaranteed Tracking Error Performance for Uncertain Canonical Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
27
(
6
), pp.
1139
1150
.
You do not currently have access to this content.