Abstract

Vehicle ad hoc network (VANET) has gradually become a prominent research topic in the fields of wireless networks and intelligent vehicles. VANETs are unique mobile ad hoc networks with vehicles as their mobile nodes, presenting distinctive performance characteristics compared to traditional wireless self-organizing networks. In recent years, VANETs have gained significant attention in the wireless network and intelligent transportation domain. As an integral aspect of autonomous driving technology, vehicle-to-everything (V2X) communication spans multiple disciplines and is closely related to intelligent transportation, assisted driving, active safety, and smart vehicles. Evaluating VANET protocols and applications in real-world settings can be challenging. Therefore, utilizing simulation tools for VANET research is an effective approach. In this paper, we have designed and developed an optimized platform that uses IEEE 802.11a and IEEE 802.11p protocols for communication within a simulated urban traffic environment created with NS-2. The simulation results confirm the feasibility and rationale of applying the IEEE 802.11p protocol to wireless vehicular ad hoc networks. Within a distance of 300 m, at 0.0000 s, 14 key packets have not arrived in IEEE 802.11a, and 8 packets have not arrived in IEEE 802.11p; at 8.0000 s, 38 key packets have not arrived in IEEE802.11a, and 6 packets have not arrived in IEEE802.11p. Comparing the performance of IEEE 802.11a and IEEE 802.11p, the study concluded that the use of the 802.11p protocol in urban mobile environments can improve reliability and reduce average packet latency.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Voulgaris
,
S.
,
Dobson
,
M.
, and
Van Steen
,
M.
,
2016
, “
Decentralized Network-Level Synchronization in Mobile Ad Hoc Networks
,”
ACM Trans. Sens. Netw.
,
12
(
1
), pp.
1
42
.
2.
Ubarhande
,
S. D.
,
Doye
,
D. D.
, and
Nalwade
,
P. S.
,
2017
, “
A Secure Path Selection Scheme for Mobile Ad Hoc Network
,”
Wirel. Pers. Commun.
,
97
(
1
), pp.
1
10
.
3.
Jamil
,
F.
,
Javaid
,
A.
,
Umer
,
T.
, and
Rehmani
,
M. H.
,
2016
, “
A Comprehensive Survey of Network Coding in Vehicular Ad-Hoc Networks
,”
Wirel. Netw.
,
23
(
8
), pp.
2395
2414
.
4.
Sun
,
J. G.
,
Wang
,
W. S.
,
Kou
,
L.
,
Lin
,
Y.
,
Zhang
,
L. G.
,
Da
,
Q. G.
, and
Chen
,
L.
,
2020
, “
A Data Authentication Scheme for UAV Ad Hoc Network Communication
,”
J. Supercomput.
,
76
(
6
), pp.
4041
4056
.
5.
Sharma
,
V.
, and
Kumar
,
R.
,
2017
, “
G-FANET: An Ambient Network Formation Between Ground and Flying Ad Hoc Networks
,”
Telecommun. Syst.
,
65
(
1
), pp.
31
54
.
6.
Zheng
,
Z. G.
,
Sangaiah
,
A. K.
, and
Wang
,
T.
,
2018
, “
Adaptive Communication Protocols in Flying Ad Hoc Network
,”
IEEE Commun. Mag.
,
56
(
1
), pp.
136
142
.
7.
Olaverri-Monreal
,
C.
,
Gomes
,
P.
,
Fernandes
,
R.
,
Vieira
,
F.
, and
Ferreira
,
M.
,
2010
, “
The See-Through System: A VANET-Enabled Assistant for Overtaking Maneuvers
,”
2010 IEEE Intell. Veh. Symposium
,
La Jolla, CA
,
June 21–24
, pp.
123
128
.
8.
Ahmed
,
M.
,
Moustafa
,
N.
,
Akhter
,
A. F. M. S.
,
Razzak
,
I.
,
Surid
,
E.
,
Anwar
,
A.
,
Shah
,
A. F. M. S.
, and
Zengin
,
A.
,
2021
, “
A Blockchain-Based Emergency Message Transmission Protocol for Cooperative VANET
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
10
), pp.
19624
19633
.
9.
Shinde
,
S. S.
,
Yadahalli
,
R. M.
, and
Shabadkar
,
R.
,
2021
, “Cloud and IoT-Based Vehicular Ad Hoc Networks (VANET),”
Cloud and IoT-Based Vehicular Ad Hoc Networks
, vol. 40, No. 4, pp.
67
82
.
10.
Ubarhande
,
S. D.
,
Doye
,
D. D.
, and
Nalwade
,
P. S.
,
2019
, “
A Time Stamp-Based Algorithm to Improve Security and Performance of Mobile Ad Hoc Network
,”
Wirel. Netw.
,
25
(
4
), pp.
1867
1874
.
11.
Sharma
,
V.
, and
Kumar
,
R.
,
2018
, “
Three-Tier Neural Model for Service Provisioning Over Collaborative Flying Ad Hoc Networks
,”
Neural Comput. Appl.
,
29
(
10
), pp.
837
856
.
12.
Bounouni
,
M.
, and
Bouallouche-Medjkoune
,
L.
,
2016
, “
A Hybrid Stimulation Approach for Coping Against the Malevolence and Selfishness in Mobile Ad Hoc Network
,”
Wirel. Pers. Commun.
,
88
(
2
), pp.
255
281
.
13.
Hou
,
Y. F.
,
Wei
,
Y. F.
,
Song
,
M.
, and
Yu
,
R. F.
,
2016
, “
Topology Evolution Model for Ad Hoc-Cellular Hybrid Networks Based on Complex Network Theory
,”
Int. J. Commun. Syst.
,
30
(
6
), pp.
e3119
.
14.
Ramakrishnan
,
B.
,
Bhagavath Nishanth
,
R.
,
Milton Joe
,
M.
, and
Selvi
,
M.
,
2017
, “
Cluster Based Emergency Message Broadcasting Technique for Vehicular Ad Hoc Network
,”
Wirel. Netw.
,
23
(
1
), pp.
233
248
.
15.
Ahmad
,
I.
,
Ashraf
,
U.
, and
Ghafoor
,
A.
,
2016
, “
A Comparative QoS Survey of Mobile Ad Hoc Network Routing Protocols
,”
J. Chin. Inst. Eng.
,
39
(
5
), pp.
585
592
.
16.
Taha
,
A.
,
Alsaqour
,
R.
,
Uddin
,
M.
,
Abdelhaq
,
M.
, and
Saba
,
T.
,
2017
, “
Energy Efficient Multipath Routing Protocol for Mobile Ad-Hoc Network Using the Fitness Function
,”
IEEE Access
,
5
(
5
), pp.
10369
10381
.
17.
Zareei
,
M.
,
Mohamed
,
E. M.
,
Anisi
,
H.
,
Rosales
,
C. V.
,
Tsukamoto
,
K.
, and
Khan
,
M. K.
,
2016
, “
On-Demand Hybrid Routing for Cognitive Radio Ad-Hoc Network
,”
IEEE Access
,
4
(
11
), pp.
8294
8302
.
18.
Kaiwartya
,
O.
,
Abdullah
,
A. H.
,
Cao
,
Y.
,
Altameem
,
A.
,
Prasad
,
M.
,
Lin
,
C. T.
, and
Liu
,
X. L.
,
2016
, “
Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects
,”
IEEE Access
,
4
(
9
), pp.
5356
5373
.
19.
He
,
Z. J.
,
Cao
,
J.
, and
Liu
,
X.
,
2016
, “
SDVN: Enabling Rapid Network Innovation for Heterogeneous Vehicular Communication
,”
IEEE Network
,
30
(
4
), pp.
10
15
.
20.
Omar
,
H. A.
,
Lu
,
N.
, and
Zhuang
,
W.
,
2016
, “
Wireless Access Technologies for Vehicular Network Safety Applications
,”
IEEE Network
,
30
(
4
), pp.
22
26
.
21.
Song
,
L. Y.
,
Cheng
,
X.
,
Chen
,
M. H.
,
Zhang
,
S.
, and
Zhang
,
Y.
,
2016
, “
Coordinated Device-to-Device Local Area Networks: The Approach of the China 973 Project D2D-LAN
,”
IEEE Network
,
30
(
1
), pp.
92
99
.
22.
Zhang
,
Y.
,
Qiu
,
M. K.
,
Tsai
,
C.
,
Hassan
,
M. M.
, and
Alamri
,
A.
,
2017
, “
Health-CPS: Healthcare Cyber-Physical System Assisted by Cloud and Big Data
,”
IEEE Syst. J
,
11
(
1
), pp.
88
95
.
23.
Rathore
,
M. M. U.
,
Paul
,
A.
,
Ahmad
,
A.
,
Chen
,
B.-W.
,
Huang
,
B.
, and
Ji
,
W.
,
2017
, “
Real-Time Big Data Analytical Architecture for Remote Sensing Application
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
8
(
10
), pp.
4610
4621
.
24.
Chen
,
X. F.
,
Li
,
J.
,
Weng
,
J.
,
Ma
,
J.
, and
Lou
,
W.
,
2016
, “
Verifiable Computation Over Large Database With Incremental Updates
,”
IEEE Trans. Comput.
,
65
(
10
), pp.
3184
3195
.
25.
Xu
,
Z.
,
Liu
,
Y. H.
,
Yen
,
N.
,
Mei
,
L.
,
Luo
,
X.
,
Wei
,
X.
, and
Hu
,
C.
,
2020
, “
Crowdsourcing Based Description of Urban Emergency Events Using Social Media Big Data
,”
IEEE Trans. Cloud Comput.
,
8
(
2
), pp.
387
397
.
26.
Zeydan
,
E.
,
Baştuğ
,
E.
,
Bennis
,
M.
,
Kader
,
M. A.
,
Karatepe
,
I. A.
,
Er
,
A. S.
, and
Debbah
,
M.
,
2016
, “
Big Data Caching for Networking: Moving From Cloud to Edge
,”
IEEE Commun. Mag.
,
54
(
9
), pp.
36
42
.
27.
Fong
,
S.
,
Wong
,
R.
, and
Vasilakos
,
A. V.
,
2016
, “
Accelerated PSO Swarm Search Feature Selection for Data Stream Mining Big Data
,”
IEEE Trans. Serv. Comput.
,
9
(
1
), pp.
33
45
.
28.
He
,
X.
,
Ai
,
Q.
,
Qiu
,
R. C.
,
Huang
,
W.
,
Piao
,
L.
, and
Liu
,
H.
,
2017
, “
A Big Data Architecture Design for Smart Grids Based on Random Matrix Theory
,”
IEEE Trans. Smart Grid
,
8
(
2
), pp.
674
686
.
29.
Lei
,
Y. G.
,
Jia
,
F.
,
Lin
,
J.
,
Xing
,
S.
, and
Ding
,
S.
,
2016
, “
An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data
,”
IEEE Trans. Ind. Electron.
,
63
(
5
), pp.
3137
3147
.
30.
Zhang
,
Q. C.
,
Yang
,
L.
, and
Chen
,
Z.
,
2016
, “
Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning
,”
IEEE Trans. Comput.
,
65
(
5
), pp.
1351
1362
.
You do not currently have access to this content.