Abstract

This paper describes a mutual-information (MI)-based approach that exploits a dynamics model to quantify and detect anomalies for applications such as autonomous vehicles. First, the MI is utilized to quantify the level of uncertainty associated with the driving behaviors of a vehicle. The MI approach handles novel anomalies without the need for data-intensive training; and the metric readily applies to multivariate datasets for improved robustness compared to, e.g., monitoring vehicle tracking error. Second, to further improve the response time of anomaly detection, current and past measurements are combined with a predictive component that utilizes the vehicle dynamics model. This approach compensates for the lag in the anomaly detection process compared to strictly using current and past measurements. Finally, three different MI-based strategies are described and compared experimentally: anomaly detection using MI with (1) current and past measurements (reaction), (2) current and future information (prediction), and (3) a combination of past and future information (reaction–prediction) with three different time windows. The experiments demonstrate quantification and detection of anomalies in three driving situations: (1) veering off the road, (2) driving on the wrong side of the road, and (3) swerving within a lane. Results show that by anticipating the movements of the vehicle, the quality and response time of the anomaly detection are more favorable for decision-making while not raising false alarms compared to just using current and past measurements.

References

1.
Wang
,
H.
,
Fan
,
R.
,
Sun
,
Y.
, and
Liu
,
M.
,
2022
, “
Dynamic Fusion Module Evolves Drivable Area and Road Anomaly Detection: A Benchmark and Algorithms
,”
IEEE Trans. Cybernet.
,
52
(
10
), pp.
1
11
.
2.
Castellano-Quero
,
M.
,
Castillo-López
,
M.
,
Fernández-Madrigal
,
J.-A.
,
Arévalo-Espejo
,
V.
,
Voos
,
H.
, and
García-Cerezo
,
A.
,
2023
, “
A Multidimensional Bayesian Architecture for Real-Time Anomaly Detection and Recovery in Mobile Robot Sensory Systems
,”
Eng. Appl. Artif. Intell.
,
125
(
C
), p.
106673
.
3.
Stocco
,
A.
, and
Tonella
,
P.
,
2022
, “
Confidence-Driven Weighted Retraining for Predicting Safety-Critical Failures in Autonomous Driving Systems
,”
J. Softw. Evol. Process
,
34
(
10
), p.
e2386
.
4.
Chandola
,
V.
,
Banerjee
,
A.
, and
Kumar
,
V.
,
2009
, “
Anomaly Detection: A Survey
,”
ACM Comput. Surv.
,
41
(
3
), pp.
15:1
15:58
.
5.
Callegari
,
C.
,
Giordano
,
S.
, and
Pagano
,
M.
,
2017
, “
Entropy-Based Network Anomaly Detection
,”
IEEE International Conference on Computing, Networking and Communications
,
Silicon Valley, CA
,
Jan. 26–29
, pp.
334
340
.
6.
Lei
,
X.
,
Xia
,
Y.
,
Wang
,
A.
,
Jian
,
X.
,
Zhong
,
H.
, and
Sun
,
L.
,
2023
, “
Mutual Information Based Anomaly Detection of Monitoring Data With Attention Mechanism and Residual Learning
,”
Mech. Syst. Signal Process.
,
182
(
4
), p.
109607
.
7.
Catal
,
O.
,
Leroux
,
S.
,
De Boom
,
C.
,
Verbelen
,
T.
, and
Dhoedt
,
B.
,
2020
, “
Anomaly Detection for Autonomous Guided Vehicles Using Bayesian Surprise
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 24–Jan. 24
, pp.
8148
8153
.
8.
Cook
,
A. A.
,
Misirli
,
G.
, and
Fan
,
Z.
,
2020
, “
Anomaly Detection for IoT Time-Series Data: A Survey
,”
IEEE Int. Things J.
,
7
(
7
), pp.
6481
6494
.
9.
Rajasegarar
,
S.
,
Leckie
,
C.
,
Palaniswami
,
M.
, and
Bezdek
,
J. C.
,
2007
, “
Quarter Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks
,”
IEEE International Conference on Communications
,
Glasgow, UK
,
June 24–28
, pp.
3864
3869
.
10.
Safaei
,
M.
,
Ismail
,
A. S.
,
Chizari
,
H.
,
Driss
,
M.
,
Boulila
,
W.
,
Asadi
,
S.
, and
Safaei
,
M.
,
2020
, “
Standalone Noise and Anomaly Detection in Wireless Sensor Networks: A Novel Time-Series and Adaptive Bayesian-Network-Based Approach
,”
J. Softw. Pract. Exper.
,
50
(
4
), pp.
428
446
.
11.
Krishnamurthy
,
S.
,
Sarkar
,
S.
, and
Tewari
,
A.
,
2014
, “
Scalable Anomaly Detection and Isolation in Cyber-Physical Systems Using Bayesian Networks
,”
ASME Dynamic Systems and Control Conference
,
San Antonio, TX
,
Oct. 22–24
.
12.
Han
,
L.
,
2012
, “
Research of K-MEANS Algorithm Based on Information Entropy in Anomaly Detection
,”
IEEE Conference on Multimedia Information Networking and Security
,
Nanjing, China
,
Nov. 2–4
.
13.
Gu
,
X.
,
Akoglu
,
L.
, and
Rinaldo
,
A.
,
2019
, “
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection
,”
Conference on Neural Information Processing Systems
,
Vancouver, Canada
,
Dec. 8–14
.
14.
Ahmed
,
M.
,
Mahmood
,
A. N.
, and
Maher
,
M. J.
,
2015
, “
An Efficient Technique for Network Traffic Summarization Using Multiview Clustering and Statistical Sampling
,”
EAI Endorsed Trans. Scalable Inf. Syst.
,
2
(
5
), pp.
1
9
.
15.
Akouemo
,
H. N.
, and
Povinelli
,
R. J.
,
2016
, “
Probabilistic Anomaly Detection in Natural Gas Time Series Data
,”
Int. J. Forecast.
,
32
(
3
), pp.
948
956
.
16.
Kind
,
A.
,
Stoecklin
,
M. P.
, and
Dimitropoulos
,
X.
,
2009
, “
Histogram-Based Traffic Anomaly Detection
,”
IEEE Trans. Netw. Service Manage.
,
6
(
2
), pp.
110
121
.
17.
Lang
,
C. I.
,
Sun
,
F. -K.
,
Lawler
,
B.
,
Dillon
,
J.
,
Dujaili
,
A. A.
,
Ruth
,
J.
,
Cardillo
,
P.
,
Alfred
,
P.
,
Bowers
,
A.
,
McKiernan
,
A.
, and
Boning
,
D. S.
,
2022
, “
One Class Process Anomaly Detection Using Kernel Density Estimation Methods
,”
IEEE Trans. Semicond. Manuf.
,
35
(
3
), pp.
457
469
.
18.
Chatterjee
,
A.
, and
Ahmed
,
B. S.
,
2022
, “
IoT Anomaly Detection Methods and Applications: A Survey
,”
Int. Things
,
19
(
3
), p.
100568
.
19.
Ali
,
M. H.
,
Al Mohammed
,
B. A. D.
,
Ismail
,
A.
, and
Zolkipli
,
M. F.
,
2018
, “
A New Intrusion Detection System Based on Fast Learning Network and Particle Swarm Optimization
,”
IEEE Access
,
6
, pp.
20255
20261
.
20.
Yao
,
H.
,
Fu
,
D.
,
Zhang
,
P.
,
Li
,
M.
, and
Liu
,
Y.
,
2019
, “
MSML: A Novel Multilevel Semi-Supervised Machine Learning Framework for Intrusion Detection System
,”
IEEE Int. Things J.
,
6
(
2
), pp.
1949
1959
.
21.
Wang
,
W.
,
An
,
A.
,
Zhang
,
Z.
, and
Wang
,
Q.
,
2023
, “
Early-Warning of Generator Collusion in Chinese Electricity Market Based on Information Deep Autoencoding Gaussian Mixture Model
,”
Electric Power Syst. Res.
,
221
(
C
), p.
109425
.
22.
Ahmed
,
M.
,
Naser Mahmood
,
A.
, and
Hu
,
J.
,
2016
, “
A Survey of Network Anomaly Detection Techniques
,”
J. Netw. Comput. Appl.
,
60
(
C
), pp.
19
31
.
23.
Ahmad
,
Z.
,
Khan
,
A. S.
,
Nisar
,
K.
,
Haider
,
I.
,
Hassan
,
R.
,
Haque
,
M. R.
,
Tarmizi
,
S.
, and
Rodrigues
,
J. J. P. C.
,
2021
, “
Anomaly Detection Using Deep Neural Network for IoT Architecture
,”
Appl. Sci.
,
11
(
15
), p.
7050
.
24.
Leach
,
M. J. V.
,
Sparks
,
E. P.
, and
Robertson
,
N. M.
,
2014
, “
Contextual Anomaly Detection in Crowded Surveillance Scenes
,”
Pattern Recogn. Lett.
,
44
(
C
), pp.
71
79
.
25.
Wang
,
Q.
,
Shen
,
Y.
, and
Zhang
,
J. Q.
,
2005
, “
A Nonlinear Correlation Measure for Multivariable Data Set
,”
Phys. D: Nonlinear Phenom.
,
200
(
3-4
), pp.
287
295
.
26.
Kopylova
,
Y.
,
Buell
,
D. A.
,
Huang
,
C.-T.
, and
Janies
,
J.
,
2008
, “
Mutual Information Applied to Anomaly Detection
,”
J. Commun. Netw.
,
10
(
1
), pp.
89
97
.
27.
Gautam
,
S. K.
, and
Om
,
H.
,
2015
, “
Anomaly Detection System Using Entropy Based Technique
,”
IEEE 1st International Conference on Next Generation Computing Technologies
,
Dehradun, India
,
Sept. 4–5
, pp.
738
743
.
28.
Arackaparambil
,
C.
,
Bratus
,
S.
,
Brody
,
J.
, and
Shubina
,
A.
,
2010
, “
Distributed Monitoring of Conditional Entropy for Anomaly Detection in Streams
,”
IEEE International Symposium on Parallel & Distributed Processing, Workshops and Ph.D. Forum
,
Atlanta, GA
,
Apr. 19–23
, pp.
1
8
.
29.
Kay
,
S.
, and
Emge
,
D.
,
2023
, “
Anomaly Detection Via Estimated Mutual Information and Its Relationship to the GLRT
,”
IEEE Signal Process. Lett.
,
30
, pp.
220
223
.
30.
Lima
,
C. F. L.
,
de Assis
,
F. M.
, and
Protásio
,
C. P. C.
,
2010
, “
Decision Tree Based on Shannon, Rényi and Tsallis Entropies for Intrusion Tolerant Systems
,”
IEEE Fifth International Conference on Internet Monitoring and Protection
,
Barcelona, Spain
,
May 9–15
, pp.
117
122
.
31.
Hoque
,
N.
,
Bhattacharyya
,
D. K.
, and
Kalita
,
J. K.
,
2014
, “
MIFS-ND: A Mutual Information-Based Feature Selection Method
,”
Exp. Syst. Appl.
,
41
(
14
), pp.
6371
6385
.
32.
Kappaganthu
,
K.
, and
Nataraj
,
C.
,
2011
, “
Feature Selection for Fault Detection in Rolling Element Bearings Using Mutual Information
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061001
.
33.
Feng
,
C.
,
Liu
,
C.
, and
Jiang
,
D.
,
2023
, “
Unsupervised Anomaly Detection Using Graph Neural Networks Integrated With Physical-Statistical Feature Fusion and Local-Global Learning
,”
Renew. Energy
,
206
(
C
), pp.
309
323
.
34.
Sheng
,
S.
, and
Wang
,
X.
,
2023
, “
Network Traffic Anomaly Detection Method Based on Chaotic Neural Network
,”
Alexandria Eng. J.
,
77
, pp.
567
579
.
35.
Liu
,
D.
,
Lung
,
C.-H.
,
Seddigh
,
N.
, and
Nandy
,
B.
,
2014
, “
Entropy-Based Robust PCA for Communication Network Anomaly Detection
,”
IEEE/CIC International Conference on Communications in China
,
Shanghai, China
,
Oct. 13–15
, pp.
171
175
.
36.
Wenke
,
L.
, and
Dong
,
X.
,
2001
, “
Information-Theoretic Measures for Anomaly Detection
,”
IEEE Symposium on Security and Privacy
,
Oakland, CA
,
May 14–16
, pp.
130
143
.
37.
Waskita
,
A.
,
Suhartanto
,
H.
, and
Handoko
,
L. T.
,
2016
, “
A Performance Study of Anomaly Detection Using Entropy Method
,”
IEEE International Conference on Computer, Control, Informatics and its Applications
,
Tangerang, Indonesia
,
Oct. 3–5
, pp.
137
140
.
38.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Techn. J.
,
27
(
3
), pp.
379
423
.
39.
National Highway Traffic Safety Administration
,
2023
, https://www.nhtsa.gov/risky-driving.
40.
Natori
,
K.
,
2012
, “
A Design Method of Time-Delay Systems With Communication Disturbance Observer by Using Pade Approximation
,”
IEEE International Workshop on Advanced Motion Control
,
Sarajevo, Bosnia and Herzegovina
,
Mar. 25–27
, pp.
1
6
.
You do not currently have access to this content.