Abstract

Humanoid robots must be capable of walking on complicated terrains and tackling a variety of obstacles leading to their wide range of possible implementations. To that aim, in this article, the issue of humanoid robots walking on uneven terrain and tackling static and dynamic obstacles is examined. It is inspected by implementing a novel Enhanced DAYANI Arc Contour Intelligent (EDACI) Algorithm that designs trajectory by searching feasible points in the environment. It provides an optimum steering angle, and step optimization is performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton method that leads to guide the humanoid robot stably to the target. The leg length policy has been presented, and a reward-based system has been implemented in the walking pattern generator that provides the optimum gait parameters. One humanoid robot act as a dynamic obstacle to others if they are navigating on a single terrain. It may generate a situation of deadlock, which needs to be solved. In this article, a dining philosopher controller (DPC) is employed to deal with and solve this issue. Simulations are used to evaluate the proposed approach in several uneven terrains having two humanoid NAOs. The findings indicate that it can precisely and efficiently produce optimal collision-free paths, demonstrating its efficacy. Experiments in similar terrain are performed that validate the results with a deviation under 6%. The energy efficiency of the developed controller is evaluated in reference to the inbuilt controller of NAO based on energy consumption. In order to check the feasibility and accuracy of the developed controller, a comparison with an established technique is provided.

References

1.
Kashyap
,
A. K.
, and
Parhi
,
D. R.
,
2023
, “
Dynamic Posture Stabilization of Humanoid Robot NAO Using 3D-Multilinked Dual Spring-Loaded Inverted Pendulum Model for Uneven and Inclined Floor
,”
Int. J. Humanoid Rob
.
2.
Zhu
,
Q.
,
Hu
,
J.
,
Cai
,
W.
, and
Henschen
,
L.
,
2011
, “
A New Robot Navigation Algorithm for Dynamic Unknown Environments Based on Dynamic Path Re-Computation and an Improved Scout Ant Algorithm
,”
Appl. Soft Comput. J.
,
11
(
8
), pp.
4667
4676
.
3.
Zhao
,
X.
,
Tao
,
B.
, and
Ding
,
H.
,
2021
, “
Multi-Mobile Robot Cluster System for Robot Machining of Large-Scale Workpieces
,”
IEEE/ASME Trans. Mech.
,
71
(
c
), pp.
561
571
.
4.
Li
,
Z.
,
Jing
,
X.
,
Sun
,
B.
, and
Yu
,
J.
,
2020
, “
Autonomous Navigation of a Tracked Mobile Robot With Novel Passive Bio-Inspired Suspension
,”
IEEE/ASME Trans. Mechatronics
,
25
(
6
), pp.
2633
2644
.
5.
Zhou
,
H.
,
Li
,
X.
,
Feng
,
H.
,
Li
,
E.
,
Ding
,
P.
,
Zhai
,
Y.
,
Zhang
,
S.
, and
Fu
,
Y.
,
2019
, “
Control of the Two-Wheeled Inverted Pendulum (TWIP) Robot Moving on the Continuous Uneven Ground
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics, ROBIO 2019
,
Dali, China
,
Dec. 6–8
, pp.
1588
1594
.
6.
Sugahara
,
Y.
,
Ohta
,
A.
,
Hashimoto
,
K.
,
Sunazuka
,
H.
,
Kawase
,
M.
,
Tanaka
,
C.
,
Lim
,
H.
, and
Takanishi
,
A.
,
2005
, “
Walking up and Down Stairs Carrying a Human by a Biped Locomotor With Parallel Mechanism
,”
Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
1489
1494
.
7.
Ganganath
,
N.
,
Cheng
,
C. T.
,
Fernando
,
T.
,
Iu
,
H. H. C.
, and
Tse
,
C. K.
,
2018
, “
Shortest Path Planning for Energy-Constrained Mobile Platforms Navigating on Uneven Terrains
,”
IEEE Trans. Ind. Inform.
,
14
(
9
), pp.
4264
4272
.
8.
Choi
,
Y.
,
Kim
,
D.
,
Oh
,
Y.
, and
You
,
B.-J.
,
2007
, “
Posture/Walking Control for Humanoid Robot Based on Kinematic Resolution of CoM Jacobian With Embedded Motion
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1285
1293
.
9.
Luo
,
C.
, and
Yang
,
S. X.
,
2008
, “
A Bioinspired Neural Network for Real-Time Concurrent Map Building and Complete Coverage Robot Navigation in Unknown Environments
,”
IEEE Trans. Neural Networks
,
19
(
7
), pp.
1279
1298
.
10.
Wong
,
S. C.
, and
MacDonald
,
B. A.
,
2003
, “
A Topological Coverage Algorithm for Mobile Robots
,”
Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453)
,
Las Vegas, NV
,
Oct. 27–31
, pp.
1685
1690
. vol.2.
11.
Acar
,
E. U.
,
Choset
,
H.
,
Zhang
,
Y.
, and
Schervish
,
M.
,
2003
, “
Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods
,”
Int. J. Rob. Res.
,
22
(
7–8
), pp.
441
466
.
12.
Acar
,
E. U.
,
Choset
,
H.
, and
Atkar
,
P. N.
,
2001
, “
Complete Sensor-Based Coverage With Extended-Range Detectors: A Hierarchical Decomposition in Terms of Critical Points and Voronoi Diagrams
,”
IEEE Int. Conf. Intell. Rob. Syst.
,
3
, pp.
1305
1311
.
13.
Butler
,
Z. J.
,
Rizzi
,
A. A.
, and
Hollis
,
R. L.
,
1999
, “
Contact Sensor-Based Coverage of Rectilinear Environments
,”
Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)
,
Cambridge, MA
,
Sept. 17
, pp.
266
271
.
14.
Lobos-Tsunekawa
,
K.
,
Leiva
,
F.
, and
Ruiz-Del-Solar
,
J.
,
2018
, “
Visual Navigation for Biped Humanoid Robots Using Deep Reinforcement Learning
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3247
3254
.
15.
Hildebrandt
,
A. C.
,
Klischat
,
M.
,
Wahrmann
,
D.
,
Wittmann
,
R.
,
Sygulla
,
F.
,
Seiwald
,
P.
,
Rixen
,
D.
, and
Buschmann
,
T.
,
2017
, “
Real-Time Path Planning in Unknown Environments for Bipedal Robots
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1856
1863
.
16.
Nishiwaki
,
K.
,
Chestnutt
,
J.
, and
Kagami
,
S.
,
2012
, “
Autonomous Navigation of a Humanoid Robot Over Unknown Rough Terrain Using a Laser Range Sensor
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1251
1262
.
17.
Belter
,
D.
,
Łabęcki
,
P.
, and
Skrzypczyński
,
P.
,
2016
, “
Adaptive Motion Planning for Autonomous Rough Terrain Traversal With a Walking Robot
,”
J. F. Rob.
,
33
(
3
), pp.
337
370
.
18.
Morisawa
,
M.
,
Kita
,
N.
,
Nakaoka
,
S.
,
Kaneko
,
K.
,
Kajita
,
S.
, and
Kanehiro
,
F.
,
2014
, “
Biped Locomotion Control for Uneven Terrain With Narrow Support Region
,”
Proceedings of the 2014 IEEE/SICE International Symposium on System Integration
,
Tokyo, Japan
,
Dec. 13–15
,
IEEE
, pp.
34
39
.
19.
Heidari
,
F.
, and
Fotouhi
,
R.
,
2015
, “
A Human-Inspired Method for Point-to-Point and Path-Following Navigation of Mobile Robots
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041025
.
20.
Mummolo
,
C.
,
Peng
,
W. Z.
,
Gonzalez
,
C.
, and
Kim
,
J. H.
,
2018
, “
Contact-Dependent Balance Stability of Biped Robots
,”
ASME J. Mech. Rob.
,
10
(
2
), p. 021009.
21.
Guo
,
D.
,
Wang
,
H.
, and
Leang
,
K. K.
,
2018
, “
Nonlinear Vision-Based Observer for Visual Servo Control of an Aerial Robot in Global Positioning System Denied Environments
,”
ASME J. Mech. Rob.
,
10
(
6
), p. 061018.
22.
Menon
,
M. S.
,
Ravi
,
V. C.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p. 041010.
23.
Eskandary
,
P. K.
,
Belzile
,
B.
, and
Angeles
,
J.
,
2019
, “
Trajectory-Planning and Normalized-Variable Control for Parallel Pick-and-Place Robots
,”
ASME J. Mech. Rob.
,
11
(
3
), p. 031001.
24.
Chalvet
,
V.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2016
, “
Trajectory Planning for Micromanipulation With a Nonredundant Digital Microrobot: Shortest Path Algorithm Optimization With a Hypercube Graph Representation
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021013
.
25.
Nishiwaki
,
K.
,
Chestnutt
,
J.
, and
Kagami
,
S.
,
2014
, “Planning and Control of a Humanoid Robot for Navigation on Uneven Multi-Scale Terrain,”
Springer Tracts in Advanced Robotics
,
Springer
,
Cham
, pp.
401
415
.
26.
Dalmasso
,
M.
,
Garrell
,
A.
,
Domínguez
,
J. E.
,
Jiménez
,
P.
, and
Sanfeliu
,
A
.,
2021
, “
Human-Robot Collaborative Multi-Agent Path Planning Using Monte Carlo Tree Search and Social Reward Sources
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Xi'an, China
,
May 30–June 5
, pp.
10133
10138
.
27.
Wei
,
H.
,
Shuai
,
M.
, and
Wang
,
Z.
,
2012
, “
Dynamically Adapt to Uneven Terrain Walking Control for Humanoid Robot
,”
Chin. J. Mech. Eng.
,
25
(
2
), pp.
214
222
.
28.
Manchester
,
I. R.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.
29.
Jo
,
J.
,
Park
,
G.
, and
Oh
,
Y.
,
2022
, “
Robust Walking Stabilization Strategy of Humanoid Robots on Uneven Terrain via QP-Based Impedance/Admittance Control
,”
Rob. Auton. Syst.
,
154
, p.
104148
.
30.
“Webots—Aldebaran 2.1.4.13 Documentation”
. http://doc.aldebaran.com/2-1/software/webots/webots_index.html. Accessed February 14, 2020.
31.
“NAO Documentation—Aldebaran 2.1.4.13 Documentation”
. http://doc.aldebaran.com/2-1/home_nao.html. Accessed June 22, 2020.
32.
Parhi
,
D. R.
, and
Chhotray
,
A.
,
2018
, “
Development and Analysis of DAYANI Arc Contour Intelligent Technique for Navigation of Two-Wheeled Mobile Robot
,”
Ind. Rob.
,
45
(
5
), pp.
688
702
.
33.
Sun
,
Z.
, and
Roos
,
N.
,
2014
, “
An Energy Efficient Dynamic Gait for a Nao Robot
,”
Proceedings of the 2014 IEEE International Conference on Autonomous Robot Systems and Competition. ICARSC 2014
,
Espinho, Portugal
,
May 14–15
, pp.
267
272
.
34.
Shoham
,
M.
,
Li
,
C. J.
,
Hacham
,
Y.
,
Kreindler
,
E.
, and
Weill
,
R.
,
1992
, “
Neural Network Control of Robot Arms
,”
CIRP Ann.
,
41
(
1
), pp.
407
410
.
35.
Ramdane
,
H.
,
Faisal
,
M.
,
Algabri
,
M.
, and
Al-Mutib
,
K.
,
2013
, “
Mobile Robot Navigation With Obstacle Avoidance in Unknown Indoor Environment Using MATLAB
,”
IJCSN Int. J. Comput. Sci. Netw.
,
2
(
6
), pp.
2277
5420
.
You do not currently have access to this content.