This paper aims at presenting a survey of the fractional derivative acoustic wave equations, which have been developed in recent decades to describe the observed frequency-dependent attenuation and scattering of acoustic wave propagating through complex media. The derivation of these models and their underlying elastoviscous constitutive relationships are reviewed, and the successful applications and numerical simulations are also highlighted. The different fractional derivative acoustic wave equations characterizing viscous dissipation are analyzed and compared with each other, along with the connections and differences between these models. These model equations are mainly classified into two categories: temporal and spatial fractional derivative models. The statistical interpretation for the range of power-law indices is presented with the help of Lévy stable distribution. In addition, the fractional derivative biharmonic wave equations governing scattering attenuation are introduced and can be viewed as a generalization of viscous dissipative attenuation models.

References

1.
d'Astous
,
F. T.
, and
Foster
,
F. S.
,
1986
, “
Frequency Dependence of Ultrasound Attenuation and Backscatter in Breast Tissue
,”
Ultrasound Med. Biol.
,
12
(
10
), pp.
795
808
.
2.
Liu
,
J.
,
Wei
,
X. C.
,
Ji
,
Y. X.
,
Chen
,
T. S.
,
Liu
,
C. Y.
,
Zhang
,
C. T.
, and
Dai
,
M. G.
,
2011
, “
An Analysis of Seismic Scattering Attenuation in a Random Elastic Medium
,”
Appl. Geophys.
,
8
(
4
), pp.
344
354
.
3.
Lin
,
T.
,
Ophir
,
J.
, and
Potter
,
G.
,
1987
, “
Frequency-Dependent Ultrasonic Differentiation of Normal and Diffusely Diseased Liver
,”
J. Acoust. Soc. Am.
,
82
(
4
), pp.
1131
1138
.
4.
He
,
P.
,
1998
, “
Simulation of Ultrasound Pulse Propagation in Lossy Media Obeying a Frequency Power Law
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
45
(
1
), pp.
114
125
.
5.
Pritz
,
T.
,
2004
, “
Frequency Power Law of Material Damping
,”
Appl. Acoust.
,
65
(
11
), pp.
1027
1036
.
6.
Cai
,
W.
, and
Chen
,
W.
,
2016
, “
Fractional Derivative Modeling of Frequency-Dependent Dissipative Mechanism for Wave Propagation in Complex Media
,”
Chin. J. Theor. Appl. Mech.
,
48
(
6
), pp.
1265
1280
.
7.
Szabo
,
T. L.
, and
Wu
,
J.
,
2000
, “
A Model for Longitudinal and Shear Wave Propagation in Viscoelastic Media
,”
J. Acoust. Soc. Am.
,
107
(
5 Pt. 1
), pp.
2437
2446
.
8.
Mavko
,
G.
,
Mukerji
,
T.
, and
Dvorkin
,
J.
,
2009
,
The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media
,
Cambridge University Press
,
Cambridge, UK
.
9.
Aki
,
K.
,
1980
, “
Scattering and Attenuation of Shear Waves in the Lithosphere
,”
J. Geophys. Res. Sol. Earth Banner
,
85
(
B11
), pp.
6496
6504
.
10.
Blackstock
,
D. T.
,
1967
, “
Transient Sound Radiated Into a Viscous Fluid
,”
J. Acoust. Soc. Am.
,
41
(
5
), pp.
1312
1319
.
11.
Szabo
,
T. L.
,
1994
, “
Time Domain Wave Equations for Lossy Media Obeying a Frequency Power Law
,”
J. Acoust. Soc. Am.
,
96
(
1
), pp.
491
500
.
12.
Nachman
,
A. I.
,
Smith
,
J. F.
, III
, and
Waag
,
R. C.
,
1990
, “
An Equation for Acoustic Propagation in Inhomogeneous Media With Relaxation Losses
,”
J. Acoust. Soc. Am.
,
88
(
3
), pp.
1584
1595
.
13.
Rossikhin
,
Y. A.
,
2010
, “
Reflections on Two Parallel Ways in the Progress of Fractional Calculus in Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010701
.
14.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
15.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
16.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
Imperial College Press
,
London
.
17.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
18.
Horton
,
C. W.
, Sr.
,
1981
, “
Comment on ‘Kramers–Kronig Relationship Between Ultrasonic Attenuation and Phase Velocity’ (J. Acoust. Soc. Am. 69, 696–701 (1981))
,”
J. Acoust. Soc. Am.
,
70
(
4
), pp.
1182
1182
.
19.
Kronig
,
R. D. L.
,
1926
, “
On the Theory of Dispersion of X-Rays
,”
J. Opt. Soc. Am.
,
12
(
6
), pp.
547
557
.
20.
Waters
,
K. R.
,
Hughes
,
M. S.
,
Mobley
,
J.
,
Brandenburger
,
G. H.
, and
Miller
,
J. G.
,
2000
, “
On the Applicability of Kramers–Krönig Relations for Ultrasonic Attenuation Obeying a Frequency Power Law
,”
J. Acoust. Soc. Am.
,
108
(
2
), pp.
556
563
.
21.
Waters
,
K. R.
,
Hughes
,
M. S.
,
Mobley
,
J.
,
Brandenburger
,
G. H.
, and
Miller
,
J.
,
1999
, “
Kramers–Kronig Dispersion Relations for Ultrasonic Attenuation Obeying a Frequency Power Law
,”
IEEE
Ultrasonics Symposium
, Caesars Tahoe, NV, Oct. 17–20, pp.
537
541
.
22.
Waters
,
K. R.
,
Mobley
,
J.
, and
Miller
,
J. G.
,
2005
, “
Causality-Imposed (Kramers–Kronig) Relationships Between Attenuation and Dispersion
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
5
), pp.
822
823
.
23.
Waters
,
K. R.
,
Hughes
,
M. S.
,
Mobley
,
J.
, and
Miller
,
J. G.
,
2003
, “
Differential Forms of the Kramers–Kronig Dispersion Relations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
50
(
1
), pp.
68
76
.
24.
Holm
,
S.
, and
Holm
,
M. B.
,
2017
, “
Restrictions on Wave Equations for Passive Media
,”
J. Acoust. Soc. Am.
,
142
(
4
), pp.
1888
1896
.
25.
Dieterich
,
W.
, and
Maass
,
P.
,
2002
, “
Non-Debye Relaxations in Disordered Ionic Solids
,”
Chem. Phys.
,
284
(
1–2
), pp.
439
467
.
26.
Williams
,
G.
, and
Watts
,
D. C.
,
1970
, “
Non-Symmetrical Dielectric Relaxation Behaviour Arising From a Simple Empirical Decay Function
,”
Trans. Faraday Soc.
,
66
, pp.
80
85
.
27.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
J. Appl. Phys.
,
7
(
8
), pp.
311
317
.
28.
Nutting
,
P.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
679
685
.
29.
Blair
,
G. S.
, and
Caffyn
,
J.
,
1949
, “
VI. An Application of the Theory of Quasi-Properties to the Treatment of Anomalous Strain-Stress Relations
,”
London, Edinburg, Dublin Philos. Mag.
,
40
(
300
), pp.
80
94
.
30.
Xu
,
H.
, and
Jiang
,
X.
,
2016
, “
Creep Constitutive Models for Viscoelastic Materials Based on Fractional Derivatives
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1377
1384
.
31.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
32.
Bagley
,
R. L.
,
1989
, “
Power Law and Fractional Calculus Model of Viscoelasticity
,”
AIAA J.
,
27
(
10
), pp.
1412
1417
.
33.
Bagley
,
R. L.
, and
Torvik
,
J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
34.
Hanyga
,
A.
,
2003
, “
An Anisotropic Cole–Cole Model of Seismic Attenuation
,”
J. Comput. Acoust.
,
11
(
01
), pp.
75
90
.
35.
Carcione
,
J. M.
,
2008
, “
Theory and Modeling of Constant-Q P-and S-Waves Using Fractional Time Derivatives
,”
Geophysics
,
74
(
1
), pp.
T1
T11
.
36.
Carcione
,
J. M.
,
Cavallini
,
F.
,
Mainardi
,
F.
, and
Hanyga
,
A.
,
2002
, “
Time-Domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives
,”
Pure Appl. Geophys.
,
159
(
7–8
), pp.
1719
1736
.
37.
Guo
,
P.
,
McMechan
,
G. A.
, and
Guan
,
H.
,
2016
, “
Comparison of Two Viscoacoustic Propagators for Q-Compensated Reverse Time Migration
,”
Geophysics
,
81
(
5
), pp.
S281
S297
.
38.
Metzler
,
R.
,
Barkai
,
E.
, and
Klafter
,
J.
,
1999
, “
Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker–Planck Equation Approach
,”
Phys. Rev. Lett.
,
82
(
18
), p.
3563
.
39.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
40.
Metzler
,
R.
, and
Klafter
,
J.
,
2004
, “
The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics
,”
J. Phys. A
,
37
(
31
), p.
R161
.
41.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q Is Almost Frequency Independent—II
,”
Geophys. J. Int.
,
13
(
5
), pp.
529
539
.
42.
Holm
,
S.
, and
Sinkus
,
R.
,
2010
, “
A Unifying Fractional Wave Equation for Compressional and Shear Waves
,”
J. Acoust. Soc. Am.
,
127
(
1
), pp.
542
548
.
43.
Holm
,
S.
,
Näsholm
,
S. P.
,
Prieur
,
F.
, and
Sinkus
,
R.
,
2013
, “
Deriving Fractional Acoustic Wave Equations From Mechanical and Thermal Constitutive Equations
,”
Comput. Math. Appl.
,
66
(
5
), pp.
621
629
.
44.
Holm
,
S.
, and
Näsholm
,
S. P.
,
2011
, “
A Causal and Fractional All-Frequency Wave Equation for Lossy Media
,”
J. Acoust. Soc. Am.
,
130
(
4
), pp.
2195
2202
.
45.
Holm
,
S.
, and
Näsholm
,
S. P.
,
2014
, “
Comparison of Fractional Wave Equations for Power Law Attenuation in Ultrasound and Elastography
,”
Ultrasound Med. Biol.
,
40
(
4
), pp.
695
703
.
46.
Caputo
,
M.
,
Carcione
,
J. M.
, and
Cavallini
,
F.
,
2011
, “
Wave Simulation in Biologic Media Based on the Kelvin-Voigt Fractional-Derivative Stress-Strain Relation
,”
Ultrasound Med. Biol.
,
37
(
6
), pp.
996
1004
.
47.
Kelly
,
J. F.
, and
McGough
,
R. J.
,
2016
, “
Approximate Analytical Time-Domain Green's Functions for the Caputo Fractional Wave Equation
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
1039
1047
.
48.
Cai
,
W.
,
Chen
,
W.
, and
Xu
,
W.
,
2018
, “
The Fractal Derivative Wave Equation: Application to Clinical Amplitude/Velocity Reconstruction Imaging
,”
J. Acoust. Soc. Am.
,
143
(
3
), pp.
1559
1566
.
49.
Prieur
,
F.
, and
Holm
,
S.
,
2011
, “
Nonlinear Acoustic Wave Equations With Fractional Loss Operators
,”
J. Acoust. Soc. Am.
,
130
(
3
), pp.
1125
1132
.
50.
Prieur
,
F.
,
Vilenskiy
,
G.
, and
Holm
,
S.
,
2012
, “
A More Fundamental Approach to the Derivation of Nonlinear Acoustic Wave Equations With Fractional Loss Operators (L)
,”
J. Acoust. Soc. Am.
,
132
(
4
), pp.
2169
2172
.
51.
Buckingham
,
M. J.
,
1997
, “
Theory of Acoustic Attenuation, Dispersion, and Pulse Propagation in Unconsolidated Granular Materials Including Marine Sediments
,”
J. Acoust. Soc. Am.
,
102
(
5
), pp.
2579
2596
.
52.
Buckingham
,
M. J.
,
2000
, “
Wave Propagation, Stress Relaxation, and Grain-to-Grain Shearing in Saturated, Unconsolidated Marine Sediments
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2796
2815
.
53.
Holm
,
S.
, and
Pandey
,
V.
,
2016
, “
Wave Propagation in Marine Sediments Expressed by Fractional Wave and Diffusion Equations
,”
IEEE/OES
China Ocean Acoustics (COA), Harbin, China, Jan. 9–11, pp.
1
5
.
54.
Pandey
,
V.
, and
Holm
,
S.
,
2016
, “
Connecting the Grain-Shearing Mechanism of Wave Propagation in Marine Sediments to Fractional Order Wave Equations
,”
J. Acoust. Soc. Am.
,
140
(
6
), pp.
4225
4236
.
55.
Pandey
,
V.
, and
Holm
,
S.
,
2016
, “
Linking the Fractional Derivative and the Lomnitz Creep Law to Non-Newtonian Time-Varying Viscosity
,”
Phys. Rev. E
,
94
(
3–1
), p.
032606
.
56.
Konjik
,
S.
,
Oparnica
,
L.
, and
Zorica
,
D.
,
2010
, “
Waves in Fractional Zener Type Viscoelastic Media
,”
J. Math. Anal. Appl.
,
365
(
1
), pp.
259
268
.
57.
Näsholm
,
S. P.
, and
Holm
,
S.
,
2013
, “
On a Fractional Zener Elastic Wave Equation
,”
Fract. Calc. Appl. Anal.
,
16
(
1
), pp.
26
50
.
58.
Näsholm
,
S. P.
, and
Holm
,
S.
,
2011
, “
Linking Multiple Relaxation, Power-Law Attenuation, and Fractional Wave Equations
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
3038
3045
.
59.
Wharmby
,
A. W.
,
2016
, “
A Fractional Calculus Model of Anomalous Dispersion of Acoustic Waves
,”
J. Acoust. Soc. Am.
,
140
(
3
), pp.
2185
2191
.
60.
Atanacković
,
T. M.
,
Janev
,
M.
,
Konjik
,
S.
, and
Pilipović
,
S.
,
2017
, “
Wave Equation for Generalized Zener Model Containing Complex Order Fractional Derivatives
,”
Continuum Mech. Thermodyn.
,
29
(
2
), pp.
569
583
.
61.
Chen
,
W.
, and
Holm
,
S.
,
2003
, “
Modified Szabo's Wave Equation Models for Lossy Media Obeying Frequency Power Law
,”
J. Acoust. Soc. Am.
,
114
(
5
), pp.
2570
2574
.
62.
Norton
,
G. V.
,
2009
, “
Comparison of Homogeneous and Heterogeneous Modeling of Transient Scattering From Dispersive Media Directly in the Time Domain
,”
Math. Comput. Simul.
,
80
(
4
), pp.
682
692
.
63.
Norton
,
G. V.
,
2009
, “
Numerical Solution of the Wave Equation Describing Acoustic Scattering and Propagation Through Complex Dispersive Moving Media
,”
Nonlinear Anal. Theory
,
71
(
12
), pp.
E849
E854
.
64.
Norton
,
G. V.
, and
Novarini
,
J. G.
,
2003
, “
Including Dispersion and Attenuation Directly in the Time Domain for Wave Propagation in Isotropic Media
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
3024
3031
.
65.
Norton
,
G. V.
, and
Purrington
,
R. D.
,
2009
, “
The Westervelt Equation With Viscous Attenuation Versus a Causal Propagation Operator: A Numerical Comparison
,”
J. Sound Vib.
,
327
(
1–2
), pp.
163
172
.
66.
Jing
,
Y.
,
Tao
,
M.
, and
Clement
,
G. T.
,
2011
, “
Evaluation of a Wave-Vector-Frequency-Domain Method for Nonlinear Wave Propagation
,”
J. Acoust. Soc. Am.
,
129
(
1
), pp.
32
46
.
67.
Liebler
,
M.
,
Ginter
,
S.
,
Dreyer
,
T.
, and
Riedlinger
,
R. E.
,
2004
, “
Full Wave Modeling of Therapeutic Ultrasound: Efficient Time-Domain Implementation of the Frequency Power-Law Attenuation
,”
J. Acoust. Soc. Am.
,
116
(
5
), pp.
2742
2750
.
68.
Song
,
F.
,
Zeng
,
F.
,
Cai
,
W.
,
Chen
,
W.
, and
Karniadakis
,
G. E.
,
2017
, “
Efficient Two-Dimensional Simulations of the Fractional Szabo Equation With Different Time-Stepping Schemes
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1286
1297
.
69.
Chen
,
W.
,
Zhang
,
X.
, and
Cai
,
X.
,
2009
, “
A Study on Modified Szabo's Wave Equation Modeling of Frequency-Dependent Dissipation in Ultrasonic Medical Imaging
,”
Phys. Scr.
,
2009
(
T136
), p.
014014
.
70.
Zhang
,
X.
,
Chen
,
W.
, and
Zhang
,
C.
,
2012
, “
Modified Szabo's Wave Equation for Arbitrarily Frequency-Dependent Viscous Dissipation in Soft Matter With Applications to 3D Ultrasonic Imaging
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
510
519
.
71.
Kelly
,
J. F.
,
McGough
,
R. J.
, and
Meerschaert
,
M. M.
,
2008
, “
Analytical Time-Domain Green's Functions for Power-Law Media
,”
J. Acoust. Soc. Am.
,
124
(
5
), pp.
2861
2872
.
72.
Meerschaert
,
M. M.
,
Straka
,
P.
,
Zhou
,
Y.
, and
McGough
,
R. J.
,
2012
, “
Stochastic Solution to a Time-Fractional Attenuated Wave Equation
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1273
1281
.
73.
Zhao
,
X.
, and
McGough
,
R. J.
,
2016
, “
Time-Domain Comparisons of Power Law Attenuation in Causal and Noncausal Time-Fractional Wave Equations
,”
J. Acoust. Soc. Am.
,
139
(
5
), pp.
3021
3031
.
74.
Delany
,
M.
, and
Bazley
,
E.
,
1970
, “
Acoustical Properties of Fibrous Absorbent Materials
,”
Appl. Acoust.
,
3
(
2
), pp.
105
116
.
75.
Chen
,
W.
,
Hu
,
S.
, and
Cai
,
W.
,
2016
, “
A Causal Fractional Derivative Model for Acoustic Wave Propagation in Lossy Media
,”
Arch. Appl. Mech.
,
86
(
3
), pp.
529
539
.
76.
Wismer
,
M. G.
,
2006
, “
Finite Element Analysis of Broadband Acoustic Pulses Through Inhomogenous Media With Power Law Attenuation
,”
J. Acoust. Soc. Am.
,
120
(
6
), pp.
3493
3502
.
77.
Ochmann
,
M.
, and
Makarov
,
S.
,
1993
, “
Representation of the Absorption of Nonlinear Waves by Fractional Derivatives
,”
J. Acoust. Soc. Am.
,
94
(
6
), pp.
3392
3399
.
78.
Coppens
,
A. B.
, and
Sanders
,
J. V.
,
1968
, “
Finite-Amplitude Standing Waves in Rigid-Walled Tubes
,”
J. Acoust. Soc. Am.
,
43
(
3
), pp.
516
529
.
79.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer Science & Business Media
, New York.
80.
Pang
,
G.
,
2015
, “
Space-Fractional Calculus Viscoelastic Constitutive Models for Describing Non-Local Acoustic Wave Dissipation and Vibration Damping
,” Doctoral dissertation, Hohai University, Nanjing, China..
81.
Meerschaert
,
M. M.
, and
McGough
,
R. J.
,
2014
, “
Attenuated Fractional Wave Equations With Anisotropy
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
050902
.
82.
Meerschaert
,
M. M.
, and
Sikorskii
,
A.
,
2012
,
Stochastic Models for Fractional Calculus
,
Walter de Gruyter
, Berlin.
83.
Chen
,
W.
, and
Holm
,
S.
,
2004
, “
Fractional Laplacian Time-Space Models for Linear and Nonlinear Lossy Media Exhibiting Arbitrary Frequency Power-Law Dependency
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1424
1430
.
84.
Treeby
,
B. E.
, and
Cox
,
B.
,
2010
, “
Modeling Power Law Absorption and Dispersion for Acoustic Propagation Using the Fractional Laplacian
,”
J. Acoust. Soc. Am.
,
127
(
5
), pp.
2741
2748
.
85.
Maestas
,
J. T.
, and
Collis
,
J. M.
,
2016
, “
Nonlinear Acoustic Pulse Propagation in Dispersive Sediments Using Fractional Loss Operators
,”
J. Acoust. Soc. Am.
,
139
(
3
), pp.
1420
1429
.
86.
Zhu
,
T.
, and
Harris
,
J. M.
,
2014
, “
Modeling Acoustic Wave Propagation in Heterogeneous Attenuating Media Using Decoupled Fractional Laplacians
,”
Geophysics
,
79
(
3
), pp.
T105
T116
.
87.
Zhu
,
T.
, and
Carcione
,
J. M.
,
2013
, “
Theory and Modelling of Constant-Q P-and S-Waves Using Fractional Spatial Derivatives
,”
Geophys. J. Int.
,
196
(
3
), pp.
1787
1795
.
88.
Zhu
,
T.
,
2014
, “
Time-Reverse Modelling of Acoustic Wave Propagation in Attenuating Media
,”
Geophys. J. Int.
,
197
(
1
), pp.
483
494
.
89.
Yao
,
J.
,
Kouri
,
D.
,
Zhu
,
T.
, and
Hussain
,
F.
,
2016
, “
Solving Fractional Laplacian Viscoacoustic Wave Equation Using Hermite Distributed Approximating Functional Method
,”
SEG International Exposition and 86th Annual Meeting
, Dallas, TX, pp.
3966
3971
.
90.
Zhu
,
T.
,
2017
, “
Numerical Simulation of Seismic Wave Propagation in Viscoelastic-Anisotropic Media Using Frequency-Independent Q Wave Equation
,”
Geophys.
,
82
(
4
), pp.
WA1
WA10
.
91.
Chen
,
H.
,
Zhou
,
H.
,
Li
,
Q.
, and
Wang
,
Y.
,
2016
, “
Two Efficient Modeling Schemes for Fractional Laplacian Viscoacoustic Wave Equation
,”
Geophysics
,
81
(
5
), pp.
T233
T249
.
92.
Li
,
Q.
,
Zhou
,
H.
,
Zhang
,
Q.
,
Chen
,
H.
, and
Sheng
,
S.
,
2016
, “
Efficient Reverse Time Migration Based on Fractional Laplacian Viscoacoustic Wave Equation
,”
Geophys. J. Int.
,
204
(
1
), pp.
488
504
.
93.
Holm
,
S.
,
2015
, “
Four Ways to Justify Temporal Memory Operators in the Lossy Wave Equation
,”
IEEE
International Ultrasonics Symposium
, Taipei, Taiwan, Oct. 21–24, pp.
1
4
.
94.
Treeby
,
B. E.
, and
Cox
,
B.
,
2014
, “
Modeling Power Law Absorption and Dispersion in Viscoelastic Solids Using a Split-Field and the Fractional Laplaciana)
,”
J. Acoust. Soc. Am.
,
136
(
4
), pp.
1499
1510
.
95.
Chen
,
W.
,
2005
, “
Lévy Stable Distribution and [0, 2] Power Law Dependence of Acoustic Absorption on Frequency in Various Lossy Media
,”
Chin. Phys. Lett.
,
22
(
10
), pp.
2601
2063
.
96.
Saichev
,
A. I.
, and
Zaslavsky
,
G. M.
,
1997
, “
Fractional Kinetic Equations: Solutions and Applications
,”
Chaos
,
7
(
4
), pp.
753
764
.
97.
Bloom
,
F.
,
2006
, “
Constitutive Models for Wave Propagation in Soils
,”
ASME Appl. Mech. Rev.
,
59
(
3
), pp.
146
175
.
98.
Johnson
,
D. L.
,
Koplik
,
J.
, and
Dashen
,
R.
,
1987
, “
Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media
,”
J. Fluid Mech.
,
176
(
1
), pp.
379
402
.
99.
Allard
,
J. F.
, and
Champoux
,
Y.
,
1992
, “
New Empirical Equations for Sound Propagation in Rigid Frame Fibrous Materials
,”
J. Acoust. Soc. Am.
,
91
(
6
), pp.
3346
3353
.
100.
Fellah
,
Z.
, and
Depollier
,
C.
,
2000
, “
Transient Acoustic Wave Propagation in Rigid Porous Media: A Time-Domain Approach
,”
J. Acoust. Soc. Am.
,
107
(
2
), pp.
683
688
.
101.
Fellah
,
Z. E. A.
,
Fellah
,
M.
,
Lauriks
,
W.
, and
Depollier
,
C.
,
2003
, “
Direct and Inverse Scattering of Transient Acoustic Waves by a Slab of Rigid Porous Material
,”
J. Acoust. Soc. Am.
,
113
(
1
), pp.
61
72
.
102.
Fellah
,
Z. E. A.
,
Berger
,
S.
,
Lauriks
,
W.
,
Depollier
,
C.
,
Aristegui
,
C.
, and
Chapelon
,
J.-Y.
,
2003
, “
Measuring the Porosity and the Tortuosity of Porous Materials Via Reflected Waves at Oblique Incidence
,”
J. Acoust. Soc. Am.
,
113
(
5
), pp.
2424
2433
.
103.
Fellah
,
Z. E. A.
,
Depollier
,
C.
,
Berger
,
S.
,
Lauriks
,
W.
,
Trompette
,
P.
, and
Chapelon
,
J.-Y.
,
2003
, “
Determination of Transport Parameters in Air-Saturated Porous Materials Via Reflected Ultrasonic Waves
,”
J. Acoust. Soc. Am.
,
114
(
5
), pp.
2561
2569
.
104.
Fellah
,
Z. E. A.
,
Chapelon
,
J. Y.
,
Berger
,
S.
,
Lauriks
,
W.
, and
Depollier
,
C.
,
2004
, “
Ultrasonic Wave Propagation in Human Cancellous Bone: Application of Biot Theory
,”
J. Acoust. Soc. Am.
,
116
(
1
), pp.
61
73
.
105.
Fellah
,
Z. A.
,
Sebaa
,
N.
,
Fellah
,
M.
,
Mitri
,
F.
,
Ogam
,
E.
, and
Depollier
,
C.
,
2010
, “
Ultrasonic Characterization of Air-Saturated Double-Layered Porous Media in Time Domain
,”
J. Appl. Phys.
,
108
(
1
), p.
014909
.
106.
Hanyga
,
A.
, and
Lu
,
J.-F.
,
2005
, “
Wave Field Simulation for Heterogeneous Transversely Isotropic Porous Media With the JKD Dynamic Permeability
,”
Comput. Mech.
,
36
(
3
), pp.
196
208
.
107.
Lu
,
J.-F.
, and
Hanyga
,
A.
,
2005
, “
Wave Field Simulation for Heterogeneous Porous Media With Singular Memory Drag Force
,”
J. Comput. Phys.
,
208
(
2
), pp.
651
674
.
108.
Blanc
,
E.
,
Chiavassa
,
G.
, and
Lombard
,
B.
,
2014
, “
Wave Simulation in 2D Heterogeneous Transversely Isotropic Porous Media With Fractional Attenuation: A Cartesian Grid Approach
,”
J. Comput. Phys.
,
275
, pp.
118
142
.
109.
Blanc
,
E.
,
Chiavassa
,
G.
, and
Lombard
,
B.
,
2013
, “
Biot-JKD Model: Simulation of 1D Transient Poroelastic Waves With Fractional Derivatives
,”
J. Comput. Phys.
,
237
, pp.
1
20
.
110.
Blanc
,
E.
,
2014
, “
Time-Domain Numerical Modeling of Poroelastic Waves: The Biot-JKD Model With Fractional Derivatives
,”
Doctoral dissertation
, Aix-Marseille Université, Marseille, France.https://tel.archives-ouvertes.fr/tel-00954506
111.
Chen
,
W.
,
Fang
,
J.
,
Pang
,
G.
, and
Holm
,
S.
,
2017
, “
Fractional Biharmonic Operator Equation Model for Arbitrary Frequency-Dependent Scattering Attenuation in Acoustic Wave Propagation
,”
J. Acoust. Soc. Am.
,
141
(
1
), pp.
244
253
.
You do not currently have access to this content.