This survey is devoted to recent achievements in the field of asymptotic approaches. Here we consider the asymptotics in relation to completely new and sometimes unexpected parameters. Some procedures leading to improvement and isolation of the essential analytical structure of the perturbation series are presented. It is also shown that many problems of perturbation theory, which seem to be relatively simple at a first glance, are still far from completely solved. Different asymptotic techniques to solve the same problem and their influence on the results are briefly illustrated and discussed. This review paper contains 310 references.

1.
Andrianov
IV
and
Awrejcewicz
J
(
2001a
),
New trends in asymptotic approaches: summation and interpolation methods
,
Appl. Mech. Rev.
54
(
1
),
69
92
.
2.
Andrianov
IV
and
Awrejcewicz
J
(
2001b
),
Asymptotic approaches to simplified boundary value problems of non-linear dynamics
,
Nonlinear Analysis
,
47
,
2261
2269
.
3.
Andrianov
IV
and
Manevitch
LI
(
1992
),
Asymptotology: Problems, ideas and results
,
J Natural Geometry
2
(
2
),
137
150
.
4.
Andrianov IV and Manevitch LI (1994), Asymptotology: Ideas, Methods, Results (in Russian), Aslan, Moscow.
5.
Barantsev RG (1989), Asymptotic versus Classical Mathematics, Topics in Mathematical Analysis, World Scientific, Singapore, 49–64.
6.
Babicˇ
VM
and
Buldirev
VS
(
1982
),
The art of asymptotic
,
Vestnik Lenigrad Univ Math
10
,
227
235
.
7.
Crigton DG (1994), Asymptotics-An indispensible complement to thought, computation and experiment in applied mathematical modeling, 7th Eur Conf on Math in Industry, A Fasano and M Primicerio (eds), BG Teubner, Stuttgart.
8.
Friedrichs
KO
(
1955
),
Asymptotic phenomena in mathematical physics
,
Bull AMS
61
,
485
504
.
9.
Friedrichs KO (1965), Perturbation of Spectra in Hilbert Space, AMS, Providence RI.
10.
Kruskal MD (1963), Asymptotology, Mathematical Models in Physical Science, Prentice-Hall, Englewood Cliffs NJ, 17–48.
11.
Kuiken HK (2001), Practical Asymptotics, Kluwer, Amsterdam.
12.
Lin SS and Segel LA (1988), Mathematical Methods Applied to Deterministic Problems in the Natural Sciences, SIAM, Philadelphia.
13.
Segel
LA
(
1966
),
The importance of asymptotic analysis in applied mathematics
,
Am. Math. Monthly
73
(
1
),
7
14
.
14.
Segel LA and Handelman GH (1977), Mathematics Applied to Continuum Mechanics, McMillan, New York.
15.
Bender
CM
,
Milton
KA
,
Moshe
Moshe
,
Pinsky
SS
, and
Simmonds
Jr
LM
(
1987
),
Logarithmic approximations to polynomic lagrangeans
,
Phys. Rev. Lett.
58
(
25
),
2615
2618
.
16.
Bender
CM
,
Milton
KA
,
Moshe
Moshe
,
Pinsky
SS
, and
Simmonds
LM
(
1988
),
Novel perturbative scheme in quantum field theory
,
Phys. Rev. D
37
(
6
),
1472
1484
.
17.
Bender
CM
,
Milton
KA
,
Pinsky
SS
, and
Simmonds
Jr
LM
(
1989
),
A new perturbative approach to nonlinear problems
,
J. Math. Phys.
30
(
7
),
1447
1455
.
18.
Bender
CM
,
Milton
KA
, and
Boettcher
S
(
1991
),
A new perturbative approach to nonlinear partial differential equations
,
J. Math. Phys.
32
(
11
),
3031
3038
.
19.
Bender
CM
,
Duncan
A
, and
Jones
HF
(
1994
),
Convergence of the optimited δ expansions for the connected vacuum amplitude: Zero dimensions
,
Phys. Rev. D
49
(
8
),
4219
4225
.
20.
Shamrovskii AD (1997), Asymptotic Group Analysis of the Theory of Elasticity Differential Equations, (in Russian), Zaporozhie State Ing Academy, Zaporozhie.
21.
Manevitch LI, Pavlenko AV, and Shamrovskii AD (1970), Application of group theory methods to the dynamical problems for orthotropic plates, Proc VII All-Union Conf on Plates and Shells Theory (Dnepropetrovsk, 1969) (in Russian), Nauka, Moscow, 408–412.
22.
Shamrovskii
AD
(
1979
),
Asymptotic integration of static equation of the theory of elasticity in Cartesian coordinates with automated search of integration parameters
,
PMM J. Appl. Math. Mech.
43
(
5
),
925
934
.
23.
Estrada
R
(
1998
),
The Cesaro behavior of distributions
,
Proc. R. Soc. London, Ser. A
454
,
2425
2443
.
24.
Estrada
R
and
Kanwal
RP
(
1990
),
A distributional theory for asymptotic expansions
,
Proc. R. Soc. London, Ser. A
428
,
399
430
.
25.
Estrada
R
and
Kanwal
RP
(
1993
),
Taylor expansions for distribution
,
Math. Methods Appl. Sci.
16
,
297
304
.
26.
Estrada R and Kanwal RP (1994), Asymptotic Analysis: a Distributional Approach, Birka¨user, Boston, Basel, Berlin.
27.
Estrada R and Kanwal RP (2002), A Distributional Approach to Asymptotics, Theory and Applications, Birkha¨user, Boston, Basel.
28.
Bruning
J
and
Seeley
R
(
1985
),
Regular singular asymptotics
,
Adv. Math.
58
,
133
148
.
29.
Wong
R
(
1980
),
Distributional derivation of an asymptotic expansion
,
Proc. AMS
80
(
2
),
266
270
.
30.
Dmitriev
MG
(
1982
),
Differential relations for an initial jump in a singularly perturbated problems and their applications
,
Sov. Math. Dokl.
25
(
3
),
730
733
.
31.
Vasil’eva AB, Dmitriev MG, Glizer VYa, and Faminskaya MV (1981), Application of regularization and singular perturbation theory to nonlinear impulse optimal control, Prepr 8-th Triennial World IFAC Cong, Kyoto, Japan, 3, 177–180.
32.
Andrianov
IV
(
1997
),
A new asymptotic method of calculation stiffened constructions with allowance for the discrete arrangement and of the width of ribs
,
Phys. Dokl.
42
(
2
),
84
86
.
33.
Kalamkarov AL and Andrianov IV (1997), A new asymptotic approach to the analysis of reinforced structure, Appl Mech in the Americas 4, Mech and Dyn of Solids, LA Godoy, M Rijsz, and LE Snares (eds), Univ of Iowa, Iowa City IA, 155–158.
34.
Pol B and Bremmer H (1955), Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge UP, Cambridge.
35.
Andrianov
IV
,
Bulanova
NS
, and
Sedin
VL
(
1999
),
Vibration of ribbed plates on elastic basis
,
Int. Appl. Mech.
,
25
(
1
),
64
68
.
36.
Andrianov
IV
,
Mikolenko
VA
, and
Kholod
EG
(
1999
),
Nonlinear dynamics of a plane fibrous composite taking into account the width of the fiber
,
Mech. Solids
34
(
2
),
71
75
.
37.
Andrianov
IV
,
Awrejcewicz
J
, and
Matyash
M
(
2000
),
On application of perturbation method with a few perturbation parameters
,
Machine Dyn Problems
,
24
(
3
),
5
10
.
38.
Andrianov
I
,
Galka
A
, and
Tokarzewski
S
(
2000
),
Asymptotic study of geometrically nonlinear elastic strip with regular system of fibres
,
Eur. J. Mech. A/Solids
,
19
(
4
),
689
698
.
39.
Andrianov
IV
,
Ismagulov
BG
, and
Matyash
MV
(
2000
),
Buckling of cylindrical shells of variable thickness, loaded by external uniform pressure
,
Tech. Mech.
20
(
4
),
349
354
.
40.
Andrianov
IV
(
1993a
),
Asymptotic solutions for nonlinear systems with high degrees of nonlinearity
,
PMM J. Appl. Math. Mech.
57
(
5
),
941
943
.
41.
Andrianov
IV
(
1994
),
Sequential construction of the asymptotic solution in the essentially nonlinear systems
,
Phys. Dokl.
39
(
7
),
532
533
.
42.
Awrejcewicz J, Andrianov IV, and Manevitch LI (1998), Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications, Springer-Verlag, Berlin.
43.
Andrianov
IV
(
1993b
),
A new asymptotic method of integrating the equations of quantum mechanics for strong coupling
,
Phys. Dokl.
38
(
2
),
56
57
.
44.
Vorovich II, Aleksandrov VM, and Babeshko VA (1974), Nonclassical Mixed Problems of the Theory of Elasticity (in Russian), Nauka, Moscow.
45.
Egarov
YuV
(
1990
),
A contribution to the theory of generalized functions
,
Russ. Math. Surveys
,
45
(
5
),
1
49
.
46.
Maslov
VP
and
Omel’yanov
GA
(
1981
),
Asymptotic soliton-form solutions of equations with small dispersion
,
Russ. Math. Surveys
36
(
3
),
73
149
.
47.
Maslov VP and Omel’yanov GA (2001), Geometric Asymptotic for Nonlinear PDE. 1, AMS, Providence RI.
48.
Barenblatt
GI
and
Zel’dovitch
YaB
(
1971
),
Intermediate asymptotics in mathematical physics
,
Russ. Math. Surveys
,
26
(
2
),
115
129
.
49.
Barenblatt GI (1979), Similarity, Self-similarity and Intermediate Asymptotics, Plenum, New York, London.
50.
Barenblatt GI (1987), Dimensional Analysis, Gordon and Breach, New York, London.
51.
Barenblatt
GI
(
1993
),
Intermediate asymptotic, scaling laws and renormalization group in continuum mechanics
,
Meccanica
28
,
177
183
.
52.
Zel’dovitch YaB (1987), Foreword to Barenblatt (1987) [50], XIX.
53.
Bolotin VV (1961), An asymptotic method for the study of the problem of eigenvalues of rectangular regions, Problems of Continuum Mech., SIAM, Philadelphia, 56–58.
54.
Bolotin VV (1984), Random Vibration of Elastic Systems, Martinus Nijhoff Publ, the Hague, Boston.
55.
Andrianov
IV
and
Kholod
EG
(
1993a
),
Non-linear free vibration of shallow cylindrical shell by Bolotin’s asymptotic method
,
J. Sound Vib.
160
(
1
),
594
603
.
56.
Andrianov
IV
and
Kholod
EG
(
1993b
),
Intermediate asympotics in the nonlinear dynamics of shells
,
Mech. Solids
28
(
2
),
160
165
.
57.
Andrianov
IV
and
Krizhevsky
GA
(
1991
),
Investigation of natural vibrations of circular and sector plates with consideration of geometric nonlinearity
,
Mech. Solids
26
(
2
),
143
148
.
58.
Andrianov
IV
, and
Krizhevsky
GA
(
1993
),
Free vibration analysis of rectangular plates with structural inhomogenity
,
J. Sound Vib.
,
162
(
2
),
231
241
.
59.
Chen G and Zhou J (1993), Vibration and Damping in Distributed Systems, CRS, Boca Raton FL.
60.
Andrianov
IV
(
1983
),
On the theory of Berger plates
,
PMM J Appl Math. Mech.
47
(
1
),
142
144
.
61.
Andrianov
IV
(
1986
),
Construction of simplified equation of nonlinear dynamics of plates and shallow shells by the averaging method
,
PMM J. Appl. Math. Mech.
50
(
1
),
126
129
.
62.
Andrianov
IV
and
Sedin
VL
(
1988
),
Composition of simplified equations of nonlinear dynamics of plates and shells on the basis of homogenization method
,
Z. Angew. Math. Mech.
67
(
7
),
573
575
.
63.
Manevitch LI, Mikhlin YuV, and Philipchuk VN (1989), Method of Normal Vibrations for Essentially Non-linear Systems (in Russian), Nauka, Moscow.
64.
Vakakis AF, Manevitch LI, Mikhlin YuV, Pilipchuk VN, and Zevin AA (1996), Normal Modes and Localization in Non-linear Systems, Wiley, New York.
65.
Wah
T
(1964), The normal modes of vibration of certain nonlinear continuous systems, Trans. ASME 31(1).
66.
Kantorovich LV and Krylov VI (1958), Approximate Methods of Higher Analysis, Noordhoff, Groningen.
67.
Birkhoff
G
(
1983
),
Numerical fluid dynamics
,
SIAM Rev.
25
(
1
),
1
24
.
68.
Bjerrum-Bohr
NEJ
(
2000
),
1/χ expansions in nonrelativistic quantum mechanics
,
J. Math. Phys.
41
(
5
),
2515
2536
.
69.
Andrianov
IV
, and
Danishevs’kyy
VV
(
2002
),
Asymptotic approach for nonlinear periodical vibrations of continuous structures
,
J. Sound Vib.
249
(
3
),
465
481
.
70.
Andrianov
IV
, and
Samoilenko
OG
(
2001
),
Ishlinsky-Leibenzon method in the theory of elastic stability
,
Mech. Solids
36
,
6
6
.
71.
He
Ji-Huan
(
1997
),
A new approach to nonlinear partial differential equations
,
Com. Non. Sc. Num. Sim.
2
(
4
),
230
235
.
72.
He
Ji-Huan
(
1999
),
Homotopy perturbation technique
,
Comput. Methods Appl. Mech. Eng.
178
,
257
256
.
73.
He
Ji-Huan
(
2000
),
A coupling method of homotopy technique and a perturbation technique for non-linear problems
,
Int. J. Non-Linear Mech.
35
,
37
43
.
74.
Liao
SJ
(
1995
),
An approximate solution technique not depending on small parameters: a special example
,
Int. J. Non-Linear Mech.
30
(
3
),
371
380
.
75.
Andrianov
IV
, and
Awrejcewicz
J
(
2000b
),
A role of initial conditions choice on the results obtained using different perturbation methods
,
J. Sound Vib.
236
(
1
),
161
165
.
76.
Andrianov
IV
, and
Awrejcewicz
J
(
2000c
),
Construction of periodic solutions to partial differential equations with non-linear boundary conditions
,
Int. J. Nonlin. Sc. Num. Sim.
1
(
4
),
327
332
.
77.
Miles
RN
, and
Bigelow
SP
(
1994
),
Random vibration of a beam with a stick-slip end condition
,
J. Sound Vib.
169
(
1
),
445
457
.
78.
Miloserdova
JV
,
Novikov
AA
, and
Potapov
AJ
(
1981
),
Impulsive waves in one-dimensional system with nonlinear boundaries (in Russian
),
Waves and Diffraction
2
,
118
121
.
79.
Munizyn
AJ
(
1998
),
Natural oscillations of a beam with nonlinear support (in Russian
),
Probl. Theor. Eng. Realiability Machines
2
,
36
39
.
80.
Bourgain
J
(
1995
),
Construction of periodic solutions of nonlinear wave equations in higher dimension
,
Geometry Func. Anal.
5
,
105
140
.
81.
Brezis
H
(
1983
),
Periodic solutions of nonlinear vibrating strings and duality principles
,
Bull. Am. Math. Soc.
8
,
409
426
.
82.
van der Burgh
AHP
(
1979
),
On the asymptotic validity of perturbation methods for hyperbolic differential equations
,
Lect. Notes Math.
711
,
229
240
.
83.
Chikwendu
SC
(
1981
),
Nonlinear wave propagation solutions by Fourier transform perturbation
,
Int. J. Non-Linear Mech.
16
(
1
),
117
128
.
84.
Chikwendu
SC
and
Kevorkian
J
(
1972
),
A perturbation method for hyperbolic equations with small nonlinearities
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
22
,
235
258
.
85.
Chow
PL
(
1972
),
Asymptotic solutions of inhomogeneous initial boundary value problems for weakly nonlinear partial differential equations
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
22
,
629
647
.
86.
Craig
W
and
Wayne
CE
(
1993
),
Newton’s method and periodic solutions of nonlinear wave equations
,
Commun. Pure Appl. Math.
46
,
1409
1498
.
87.
Eckhaus
W
(
1975
),
New approach to the asymptotic theory of non-linear oscillations and wave propagation
,
J. Math. Anal. Appl.
49
,
575
611
.
88.
Lau
SL
,
Cheung
YK
, and
Chen
Chuhui
(
1989
),
An alternative perturbation procedure of multiple scales for nonlinear dynamics systems
,
Trans. ASME
56
(
3
),
587
605
.
89.
van Horssen
WT
(
1988
),
An asymptotic theory for a class of initial-boundary value problems for weakly nonlinear wave equations with an application to a model of the galopping oscillations of overhead transmission lines
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
48
,
1227
1243
.
90.
van Horssen
WT
(
1992
),
Asymptotics for a class of semilinear hyperbolic equations with an application to a problem with quadratic nonlinearity
,
Nonl. Anal.
19
,
501
530
.
91.
van Horssen
WT
, and
van der Burgh
AHP
(
1988
),
On initial-boundary value problems for weakly semi-linear telegraph equations. Asymptotic theory and application
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
48
,
719
736
.
92.
Keller
JB
, and
Kogelman
S
(
1970
),
Asymptotic of initial value problems for nonlinear partial differential equations
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
18
,
748
758
.
93.
Kevorkian J and Cole JD (1996), Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York.
94.
Krol
MS
(
1989
),
On a Galerkin-averaging method for weakly nonlinear wave equations
,
Math. Methods Appl. Sci.
11
,
649
664
.
95.
Lardner
RW
(
1977
),
Asymptotic solutions of nonlinear wave equations using the methods of averaging and two-timing
,
Q. Appl. Math.
35
,
225
238
.
96.
Lidskij
BV
and
Schulman
EJ
(
1988
),
Periodic solutions of the equation utt=uxx+u3=0,
Funct. Anal. Appl.
22
,
332
333
.
97.
Luke
JC
(
1966
),
A perturbation method for nonlinear dispersive wave problems
,
Proc. R. Soc. London, Ser. A
292
,
403
412
.
98.
Mitropolsky YU, Khoma G, and Gromak M (1997), Asymptotic Methods for Investigating Equations of Hyperbolic Type, Kluwer, Dordrecht.
99.
Rabinowitch
P
(
1977
),
Free vibrations for a semilinear wave equation
,
Commun. Pure Appl. Math.
30
,
31
68
.
100.
Wayne
CE
(
1990
),
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
,
Com Math Phys
127
,
479
528
.
101.
Wayne
CE
(
1997
),
Periodic solutions of nonlinear partial differential equations
,
Not. Am. Math. Soc.
7
,
895
902
.
102.
Witham
GB
(
1965
),
A general approach to linear and non-linear dispersive waves
,
J. Fluid Mech.
22
,
273
283
.
103.
Witham GB (1974), Linear and Nonlinear Waves, Willey, New York.
104.
Boertjens
GJ
and
van Horssen
WT
(
1998
),
On mode interactions for a weakly nonlinear beam equation
,
Nonlinear Dyn.
17
,
23
40
.
105.
Boertjens
GJ
and
van Horssen
WT
(
2000
),
An asymptotic theory for a beam equation with a quadratic perturbation
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
60
,
602
632
.
106.
Eisenberger
M
(
1994
),
Vibration frequencies for beams on variable one- and two-parameter elastic foundations
,
J. Sound Vib.
176
(
5
),
577
584
.
107.
Lewandowski
R
(
1994a
),
Nonlinear free vibration of beams by the finite element and continuation method
,
J. Sound Vib.
170
,
577
593
.
108.
Lewandowski
R
(
1994b
),
Solutions with bifurcation points for free vibration of beams: an analytical approach
,
J. Sound Vib.
177
,
239
249
.
1.
Lewandowski
R
(
1996a
),
Computational formulation for periodic vibration of geometrically nonlinear structures. Part 1: Theoretical background
,
Int. J. Solids Struct.
34
(
15
),
1925
1947
;
2.
Part 2: Numerical strategy and examples, ibid., 1949–1964.
1.
Lewandowski
R
(
1996b
),
On beams, membranes and plates vibration backbone curves in cases of internal resonance
,
Meccanica
31
,
323
346
.
2.
Pereira
DC
(
1990
),
Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation
,
Nonl Anal-Theory, Meth Appl
14
(
8
),
613
623
.
3.
Arnold
VI
(
1965
),
Small denominators I: Mappings of the circumference onto itself
,
Am. Math. Soc. Trans.
2
(
46
),
213
284
.
4.
Arnold VI (1978), Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin.
5.
Arnold VI (1988), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York.
6.
Arnold VI, Kozlov VV, and Neishtadt AI (1997), Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, New York.
7.
Pustyl’nikov
LD
(
1997
),
Infinite dimensional non-linear ordinary differential equations and the KAM theory
,
Russ. Math. Surveys
52
(
3
),
551
604
.
8.
Siegel CL and Moser JK (1971), Lectures on Celestial Mechanics, Springer, New York.
9.
Pilipchuk
VN
(
1985
),
The calculation of strongly nonlinear systems close to vibro-impact systems
,
PMM J Appl Mech
49
(
5
),
744
752
.
10.
Pilipchuk
VN
(
1988
),
A transformation of vibrating systems based on a nonsmooth periodic pain of functions
,
Dokl. Akad. Nauk SSSR, Ser. A
A
(
4
),
37
40
(in Russian).
11.
Pilipchuk
VN
(
1996a
),
Calculation of mechanical systems with pulsed excitation
,
ASME J. Appl. Mech.
60
(
2
),
217
226
.
12.
Pilipchuk
VN
(
1996b
),
Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations
,
J. Sound Vib.
192
(
1
),
43
64
.
13.
Pilipchuk
VN
(
1999
),
Application of special nonsmooth temporal transformations to linear and nonlinear systems under discontinuous and impulsive excitation
,
Nonlinear Dyn.
18
,
203
234
.
14.
Pilipchuk
VN
(
2000
),
Non-smooth spation-temporal transformation for impulsively forced oscillators with rigid barriers
,
J. Sound Vib.
237
(
5
),
915
919
.
15.
Pilipchuk
VN
(
2001
),
Impact modes in discrete vibrating systems with rigid barriers
,
Non-lin Mech
36
,
999
1012
.
16.
Pilipchuk
VN
,
Vakakis
AF
, and
Azeez
MAF
(
1997
),
Study of a class of subharmonic motions using a nonsmooth temporal transformation (NSTT
),
Physica D
100
,
145
164
.
17.
Wei
Y
(
1999
),
Basic vibrations and anharmonic analysis of a vibration
,
Int. J. Non-Linear Mech.
34
,
1061
1069
.
18.
Zhuravlev
VPh
(
1976
),
A method for analysing vibration—impact systems by means of special functions
,
Mech. Solids
11
(
2
),
30
34
.
19.
Zhuravlev
VPh
(
1977
),
Investigation of some vibro-impact systems by the method of non-smooth transformations
,
Mech. Solids
,
12
(
6
),
24
28
.
20.
Zhuravlev VPh and Klimov DM (1988), Applied Methods in the Theory of Oscillations (in Russian), Moscow, Nauka.
21.
Dimentberg MF (1988), Statistical Dynamics of Nonlinear and Time-Varying Systems, John Wiley & Sons, New York.
22.
Awrejcewicz J and Andrianov IV (2000), Asymptotic Methods and their use in the Theory of Shells (in Polish), Wydawnictwo Naukowo-Techniczne, Warsaw.
23.
Rosenberg
RM
(
1963
),
The Ateb(h)-functions and their properties
,
Q. J. Mech. Appl. Math.
21
(
1
),
37
47
.
24.
Babuska
I
(
1976
),
Homogenization approach in engineering
,
Lect Notes Econ. Math. Syst.
134
,
137
153
.
25.
Bakhvalov N and Panasenko G (1989), Averaging Processes in Periodic Media. Mathematical Problems in Mechanics of Composite Materials, Kluwer, Dordrecht.
26.
Bensoussan A, Lions J-L, and Papanicolaou G (1978), Asymptotic Methods in Periodic Structures, North-Holland, Amsterdam.
27.
Berdichevsky VL (1983), Variational Principles of the Continuum Mechanics (in Russian), Nauka, Moscow.
28.
Berdichevsky V, Jikov V, and Papanicolaou G (eds) (1999), Homogenization, Worlds Scientific, Singapore.
29.
Mei Chiang C, Auriault J-L, and Ng Chin-on (1996), Some application of the homogenization theory, Adv Appl Mech 32, Academic Press, New York et al. 278–348.
30.
Olejnik OA, Yosifyan GA, and Shamaev AS (1992), Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam.
31.
Andrianov IV, Manevitch LI, and Oshmyan VO (2001), Mechanics of Periodic Structures, Springer-Verlag, Berlin.
32.
Andrianov
IV
,
Zarubinskaya
MA
, and
Paschenik
AN
(
2001
),
An asymptotic analysis of stress-strain state of a strip reinforced with ribs
,
PMM J. Appl. Math. Mech.
65
(
1
),
119
124
.
33.
Van Dyke M (1975), Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford CA.
34.
Savin GN and Guz AN (1967), Stress around Curvilinear Holes in Shells, Nat2 Areon Lab, Bangalore.
35.
Grigolyuk EI and Phyl’shtinsky LA (1970), Perforated Plates and Shells (in Russian), Nauka, Moscow.
36.
Andrianov
IV
,
Konashenko
SI
, and
Sedin
VL
(
1995
),
Design of plate with wide ribs
,
Int. Appl. Mech.
31
(
3
),
229
237
.
37.
Andrianov
IV
,
Shevchenko
VV
, and
Kholod
EG
(
1995
),
Asymptotic methods in the statics and dynamics of perforated plates and shells with periodic structures
,
Tech. Mech.
15
(
2
),
141
157
.
38.
Andrianov IV, Lesnichaya VA, and Manevitch LI (1985), Homogenization Method in Statics and Dynamics of Reinforced Shells (in Russian), Nauka, Moscow.
39.
Andrianov
IV
and
Manevitch
LI
(
1975
),
Calculation for the strain-stress state in an orthotropic strip stiffened by ribs
,
Mech. Solids
10
(
4
),
125
129
.
40.
Andrianov
IV
and
Manevitch
LI
(
1983
),
Homogenization method in the theory of shells
,
Advanced in Mechs
6
(
3/4
),
3
29
(in Russian).
41.
Andrianov
IV
, and
Piskunov
VI
(
1997a
),
Stability of ribbed plates with allowance for the discrete arrangement
,
Mech. Solids
32
(
6
),
135
141
.
42.
Andrianov
IV
and
Piskunov
VI
(
1997b
),
An asymptotic investigation of the dynamics of eccentrically stiffened plates
,
PMM J. Appl. Maths. Mechs.
61
(
2
),
329
331
.
43.
Artola
M
, and
Duvaut
G
(
1977
),
Homogenisation d’une plaque renforcee
,
CR Acad. Sci. Paris Ser. A
284
(
12
),
707
710
.
44.
Caillerie
D
(
1984
),
Thin elastic and periodic plates
,
Math. Methods Appl. Sci.
6
,
151
191
.
45.
Andrianov
IV
,
Diskovsky
AA
, and
Kholod
EG
(
1998
),
Homogenization method in the theory of corrugated plates
,
Tech. Mech.
18
(
2
),
123
133
.
46.
Hoffmann
K-H
and
Botkin
ND
(
2000
),
Homogenization of von Ka´rma´n plates exited by piezoelectric patches
,
Z. Angew. Math. Mech.
80
(
9
),
579
590
.
47.
Kalamkarov AL and Kolpakov AG (1997), Analysis, Design and Optimization of Composite Shells, Wiley, New York.
48.
Parton VZ and Kudryavtsev BA (1993), Engineering Mechanics of Composite Materials, CRC Press, Boca Raton FL.
49.
Woz´niak C and Wierzbicki E (2000), Averagning Techniques in Thermomechanics of Composite Solids. Tolerance Averaging Versus Homogenazition, Cze¸stochowa, Politechnika.
50.
Dal Mazo (1993), An Introduction to Γ Convergence, Birkha¨user, Boston.
51.
Cioranescu D and Donato P (1999), An Introduction to Homogenization, Oxford UP, Oxford.
52.
Kalamkarov AL (1992), Composite and Reinforced Elements of Construction, Wiley, Chichester.
53.
Khruslov EYa (1995), Homogenized modelling of strongly inhomogeneous media, Int Congr Math 2, Basel, Birkha¨user, 270–278.
54.
Kozlov V, Maz’ya V and Movchan A (1999), Asymptotic Analysis of Fields in Multi-Structures, Oxford UP, Oxford.
55.
Sanchez-Palencia E (1980), Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin.
56.
Allaire
G
(
1992
),
Homogenization and two-scale convergence
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
23
,
1482
1518
.
57.
Concˇa C, Planchard J, and Varrninatham M (1995), Fluids and Periodic Structures, Collection Ram 38, John Wiley, Masson, Paris.
58.
Concˇa
C
, and
Lund
F
(
1999
),
Fourier homogenisation method and the propagation of acoustic waves through a periodic vortex array
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
59
(
5
),
1573
1581
.
59.
Brewster
M
and
Beylkin
G
(
1995
),
A multiresolution strategy for numerical homogenisation
,
Appl. Comput. Harmon. Anal.
2
,
327
349
.
60.
Woz´niak
C
(
1987
),
A non-standard method of modelling of thermoelastic periodic composites
,
Int. J. Eng. Sci.
5
,
483
499
.
61.
Molotkov LA (1984), Matrix Methods in the Theory of Wave Spreading in Layered Elastic and Liquid Media (in Russian), Nauka, Leningrad.
62.
Pilipchuk
VN
and
Starushenko
GA
(
1997
),
On one variant of nonsmooth transformations of variables for 1-D elastic systems of a periodic structure
,
PMM J. Appl. Mech.
61
(
2
),
267
274
.
63.
Pilipchuk
VN
and
Vakakis
AF
(
1998
),
Study of the oscillations of a nonlinearly supported string using a nonsmooth transformation
,
J. Vibr. Acoust.
120
(
2
),
434
440
.
64.
Salenger
GD
and
Vakakis
AF
(
1998a
),
Discreteness effects in the forced dynamics of a string an a periodic array of non-linear supports
,
Int. J. Non-Linear Mech.
33
(
4
),
659
673
.
65.
Salenger
GD
and
Vakakis
AF
(
1998b
),
Localized and periodic waves with discreteness effects
,
Mech. Res. Commun.
25
(
1
),
97
104
.
66.
Vedenova
EG
,
Manevitch
LI
, and
Philipchuk
VN
(
1985
),
Normal oscillations of a string with concentrated masses on non-linearly supports
,
PMM J Appl Mech
49
(
2
),
572
578
.
67.
Cioranescu
D
and
Paulin
JSJ
(
1986
),
Reinforced and honey-comb structure
,
J Math. Pures Appl.
65
,
403
422
.
68.
Cioranescu D and Paulin JSJ (1999), Homogenization of Reticulated Structures, Springer-Verlag, Berlin.
69.
Altenbach
H
(
1998
),
Theories of laminated and sandwich plates-a review
,
Mech. Compos. Mater.
34
(
3
),
333
348
.
70.
Ciarlet PG (1990), Plates and Junctions in Elastic Multi-Structures, Masson, Paris.
71.
Lewinski T and Telega JJ (2000), Plates, Laminates and Shells, World Scientific, Singapore et al.
72.
Boutin
C
(
1996
),
Microstructural effects in elastic composites
,
Int. J. Solids Struct.
33
(
7
),
1023
1051
.
73.
Boutin
C
(
2000
),
Study of permeability by periodic and self consistent homogenization
,
Eur. J. Mech. A/Solids
,
19
,
603
632
.
74.
Castro
C
and
Zuazua
E
(
2000
),
Low frequency asymptotic analysis of a string with rapidly oscillating density
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
60
(
4
),
1205
1233
.
75.
Manevitch
LI
and
Oshmyan
VG
(
1999
),
An asymptotic study of the linear vibrations of a stretched beam with concentrated masses and discrete elastic support
,
J. Sound Vib.
223
(
5
),
679
691
.
76.
Neuss-Radu
M
(
2000
),
A result on the decay of the boundary layers in the homogenisation theory
,
Asymptotic Anal.
23
,
313
328
.
77.
Nazarov SA (2001), Asymptotic Theory of Thin Plates and Shells, Nauchnaya kniga (“Scientific Book”), Novosibirsk (in Russian).
78.
Filimonov
AM
(
1996
),
Some unexpected results in the classical problem of vibrations of the string with N beads. The case of multiple frequencies
,
CR Acad. Sci. Paris Ser. I
315
(
8
),
957
961
.
79.
Filimonov
AM
(
1996
),
Continuous approximations of difference operators
,
J. Diff. Eqns.
7
(
4
),
411
422
.
80.
Filimonov
AM
and
Myshkis
AD
(
1998
),
Asymptotic estimate of solution of one mixed difference differential equation of oscillation theory
,
J. Diff. Eqns.
2
(
1
),
13
16
.
81.
Filimonov
AM
,
Kurchanov
PF
, and
Myshkis
AD
(
1991
),
Some unexpected results in the classical problem of vibrations of the string with n beads when n is large
,
CR Acad. Sci. Paris Ser. I
313
,
961
965
.
82.
Maslov VP (1976), Operational Methods, Moscow, Mir.
83.
Wattis
JAD
(
1993
),
Approximations to solitary waves on lattices, II: Quasi-continuum approximations for fast and slow waves
,
J. Phys. A
26
,
1193
1209
.
84.
Wattis
JAD
(
2000
),
Quasi-continuum approximations to lattice equations arising from the discrete nonlinear telegraph equation
,
J. Phys. A
33
,
5925
5944
.
85.
Duncan
DB
,
Eilbeck
JC
,
Fedddersen
H
, and
Wattis
JAD
(
1993
),
Solitous on lattices
,
Physica D
68
,
1
11
.
86.
Kosevich AM (1999), Crystal Lattice: Phonons, Solitons, Dislocations, Wiley-VCH, Berlin, New York.
87.
Obraztsov IF, Nerubaylo BV, and Andrianov IV (1991a), Asymptotic Methods in the Structural Mechanics of Thin-Walled Structures, (in Russian), Mashinostroyenie, Moscow.
88.
Obraztsov
IF
,
Andrianov
IV
, and
Nerubaylo
BV
(
1991b
),
Continuum approximation for high-frequency oscillations of a chain and composite equations
,
Sov. Phys. Dokl.
336
(
7
),
522
522
.
89.
Andrianov
IV
(
2002
),
Feature of limiting passage from the discrete to continuous media
,
PMM J. Appl. Math. Mech.
66
(
2
),
261
265
.
90.
Agostini L and Bass J (1950), Les theories de la Turbulence, Pub Sci Tech du Ministre de l’ais 237.
91.
Ulam SM (1960), A Collection of Mathematical Problems, Interscience, New York.
92.
Filimonov
AM
,
Mao
X
, and
Maslov
S
(
2000
),
Splash effect and erogodic properties of solution of the classic difference-differential equation
,
J. Diff. Eqns.
6
,
319
328
.
93.
Mic˙kens RE (1990), Difference Equations. Theory and Applications, Second Edition, Chapman and Hall, New York, London.
94.
Trefethen
LN
(
1998
),
Maxims about Numerical Mathematics, Computers Science and Life
,
SIAM News
31
(
1
), Jan/Feb,
4
4
.
95.
Nayfeh AH (1981), Introduction to Perturbation Techniques, John Wiley and Sons, New York.
96.
Sedov LI (1993), Similarity and Dimensional Methods in Mechanics, CRC Press, Boca Raton FL.
97.
Gol’denviezer AL (1961), Theory of Elastic Thin Shells, Pergamon Press, New York, Oxford, London, Paris.
98.
Guckenheimer J and Holmes P (1983), Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York.
99.
Evkin
AYu
(
1986
),
A new approach to the asymptotic integration of the equations of shallow convex shells in the post-critical stage
,
PMM J. Appl. Math. Mech.
53
(
1
),
92
96
.
100.
Evkin
A
and
Kalamkarov
A
(
2001a
),
Analysis of large deflection equilibrium states of composite shells of revolution, Part 1: General model and singular perturbation analysis
,
Int. J. Solids Struct.
38
(
50–51
),
8961
8974
.
101.
Evkin
A
and
Kalamkarov
A
(
2001b
),
Analysis of large deflection equilibrium states of composite shells of revolution, Part 2: Application and numerical results
,
Int. J. Solids Struct.
38
(
50–51
),
8975
8987
.
1.
Koiter WT (1945), On the stability of elastic equilibrium, PhD Thesis, Univ Delft, the Netherlands;
2.
(English Transl: Tech rep AFFDL-TR-70-25, Air Force Flight Dyn Lab, 1970).
1.
Pogorelov AV (1988), Bending of Surface and Stability of Shells, AMS, Providence RI.
2.
Manevitch LI and Pavlenko AV (1971), Asymptotic analysis of excentrically stiffened cylindrical shells theory equations, Theory of Plates and Shells (in Russian), Nauka, Moscow, 185–190.
3.
Manevitch LI and Pavlenko AV (1991), Asymptotic Method in Micromechanics of Composite Materials (in Russian), Naukova Dumka, Kiev.
4.
Manevitch LI, Pavlenko AV, and Koblik SG (1982), Asymptotic Methods in the Theory of Orthotropic Body Elasticity (in Russian), Visha Shkola, Kiev-Donezk.
5.
Muskhelishvili NI (1953), Some Basic Problems in the Mathematical Theory of Elasticity, Noordhoff, Groningen.
6.
Lekhnitskii SG (1968), Anisotropic Plates, 2 Edition, Gordon and Breach, New York.
7.
Ting TCT (1996), Anisotropic Elasticity: Theory and Applications, Oxford UP, Oxford.
8.
Kuhn P (1956), Stresses in Aircraft Shell Structures, McGraw-Hill, New York.
9.
Balabuch LI, Kolesnikov KC, Zarubin VS, Alfutov NA, Usyukin VI, and Chizhov VF (1969), Foundations of Rockets Structural Mechanics (in Russian), Vischa Shkola (High School), Moscow.
10.
Christensen RM (1979), Mechanics of Composite Materials, John Wiley and Sons, New York.
11.
Everstine
GC
and
Pipkin
AC
(
1971
),
Stress channelling in transversally isotropic elastic composites
,
Z. Angew. Math. Phys.
22
,
225
230
.
12.
Everstine
GC
and
Pipkin
AC
(
1973
),
Boundary layers in fiber-reinforced materials
,
ASME J. Appl. Mech.
40
,
512
518
.
13.
Spencer
AJM
(
1974
),
Boundary layers in highly anisotropic plane elasticity
,
Int. J. Solids Struct.
10
,
1103
1112
.
14.
Kosmodamianskii AS (1976), Stress State of the Anisotropic Media with Holes and Cavities (in Russian), Vischa Schola, Kiev-Dorezk.
15.
Bogan
YuA
(
1983
),
One singular perturbed boundary value problem in plane elasticity
,
Dynamics of Continuous Media
61
,
13
24
(in Russian).
16.
Bogan
YuA
(
1987
),
On class of singular perturbated problems in two-dimensional theory of elasticity
,
J. Appl. Mech. Tech. Phys.
28
(
2
),
138
143
.
17.
Kagadii TS (1998) Perturbation Method in Mechanics of Elastic (Viscoelastic) Anisotropic and Composite Materials (in Russian), National Mining Academy of Ukraine, Dnepropetrovsk.
18.
Kagadii
TS
,
Mossakovskaya
LV
, and
Pavlenko
AV
(
1992
),
Perturbation method in three-dimensional problem of linear viscoelasticity of anisotropic bodies
,
PMM J Appl Math Mech
56
(
5
),
167
171
.
19.
Andrianov IV, Lesnichaya VA, Loboda VV, and Manevitch LI (1986), Investigation of Engineering Structures Reinforced Shells (in Russian), Vischa Shkola, Kiev-Donezk.
20.
Andrianov
IV
,
Kholod
EG
, and
Olevsky
VI
(
1996
),
Approximate non-linear boundary value problems of reinforced shell dynamics
,
J. Sound Vib.
194
(
3
),
369
387
.
21.
Bauer SM, Filippov SB, Smirnov AL, and Tovstik PE (1993), asymptotic methods in mechanics with applications to thin shells and plates, Asymptotic Methods in Mechanics, Vaillancourt R and Smirnov AL (eds), AMS, Providence RI, 3–140.
22.
Gol’denviezer
AL
(
1982
),
The asymptotic method in the theory of shells
,
Adv in Mech
5
(
1/2
),
137
182
.
23.
Kaplunov JD, Kossovich LYa, and Nolde EV (1998), Dynamics of Thin Walled Elastic Bodies, Academic Press, San Diego CA.
24.
Ambartsumian
SA
(
1962
),
On a general theory of anisotropic shells and plates
,
Appl. Mech. Rev.
15
,
146
158
.
25.
Andrianov
IV
and
Pasechnik
AN
(
1993
),
Asymptotic study of the normal-mode vibrations of a cylindrical shells
,
Int Appl Mech
29
(
11
),
930
934
.
26.
Andrianov
IV
and
VerbonolVerbonol’
VM
(
1990
),
Investigation of stringer shells stability with taking into account prebuckling state momentous (in Russian
),
Adv. in Mech.
13
(
3/4
),
59
88
.
27.
Berger
HM
(
1955
),
A new approach to the analysis of large deflections of plates
,
ASME J. Appl. Mech.
22
(
4
),
465
472
.
28.
Timoshenko SP and Woinowsky-Krieger S (1959), Theory of Plates and Shells, McGraw Hill, New York, Toronto, London.
29.
Jones
R
(
1975
),
Remarks on the approximate analysis of the nonlinear behavior of shallow shells
,
J. Struct. Mech.
3
(
2
),
157
157
.
30.
Nash WA and Modeer JR (1960), Certain approximate analysis of the nonlinear behavior of plates and shallow shells, Proc Symp on the Theory of Thin Elastic Shells, North-Holland, Amsterdam, 331–354.
31.
Nowinski
J
and
Ismail
IA
(
1964
),
Certain approximate analysis of large deflections of cylindrical shells
,
Z. Angew. Math. Mech.
15
(
5
),
449
455
.
32.
Grigolyuk EI and Kulikov GM (1981), About an approximate method for solving nonlinear problems in the theory of elastic plates and shells, Some Appl Problems in the Theory of Plates and Shells (in Russian), Moscow Univ, 91–121.
33.
Kamiya
N
(
1978
),
Berger’s method and its applications
,
Res Repts Fac Eng Mie Univ
3
,
67
67
.
34.
Ramachandran
J
(
1974
),
Vibration of shallow spherical shell of large amplitudes
,
ASME J. Appl. Mech.
41
(
3
),
84
92
.
35.
Bucco
D
,
Jones
R
, and
Mazumdar
J
(
1978
),
The dynamic analysis of shallow spherical shells
,
ASME J. Appl. Mech.
45
(
3
),
690
691
.
36.
Schmidt
R
and
DaDeppo
DA
(
1975
),
A new approach to the analysis of shells, plates and membranes with finite deflection
,
Int. J. Non-Linear Mech.
9
(
5
),
409
421
.
37.
Prathar
G
(
1979
),
On the Berger approximation: a critical re-examination
,
J. Sound Vib.
66
(
2
),
149
154
.
38.
Maslov VP and Nazaikinskii VE (1988), Asymptotics of Operator and Pseudo-Differential Equations, Consultant Bureau, New York, London.
39.
McRae
SM
and
Vrskay
ER
(
1997
),
Perturbation theory and the classical limit of Quantum Mechanics
,
J. Math. Phys.
38
(
6
),
2899
2921
.
40.
Nayfeh AH (1973), Perturbation Methods, John Wiley and Sons, New York.
41.
Mathews J and Walker RL (1964), Mathematical Methods of Physics, WA Benjamin, New York, Amsterdam.
42.
Chen
SH
and
Cheung
YK
(
1996
),
An elliptic perturbation method for certain strongly non-linear oscillators
,
J. Sound Vib.
192
(
2
),
453
464
.
43.
Turbiner
AV
(
1984
),
Spectral problem in Quantum Mechanics and nonlinearization procedure
,
Soviet Phys. Vspekhu
141, 1
,
35
78
.
44.
Ferna´ndez FM (2000), Introduction to Perturbation Theory in Quantum Maechanics, CRC Press, Boca Raton FL.
45.
Ferna´ndez
FM
(
2001
),
Perturbation theory free from secular terms for the equations of motions of anharmonic oscillators
,
J. Math. Phys.
42
(
10
),
1
10
.
46.
Forest
E
and
Murray
D
(
1994
),
Freedom in minimal normal forms
,
Physica D
,
D74
,
181
181
.
47.
Hennemann
RHG
and
Montroll
EW
(
1974
),
On a nonlinear perturbation theory without secular terms: 1. Classical coupled anharmonic oscillators
,
Physica (Utrecht)
74
,
22
32
.
48.
Kahn
PB
,
Murray
D
, and
Zarmi
Y
(
1993
),
Freedom in small parameter expansion for nonlinear perturbations
,
Proc. R. Soc. London, Ser. A
,
A443
,
83
94
.
49.
Kahn
PB
and
Zarmi
Y
(
1991
),
Minimal normal forms in harmonic oscillations with small nonlinear perturbations
,
Physica D
,
D54
,
65
74
.
50.
Kahn
PB
and
Zarmi
Y
(
1993
),
Radius renormalization in limit cycles
,
Proc. R. Soc. London, Ser. A
A440
,
189
199
.
51.
Kahn PB and Zarmi Y (1998), Nonlinear Dynamics: Exploration Through Normal Forms, Wiley, New York.
52.
Kummer
M
(
1971
),
How to avoid secular terms in classical and quantum mechanics
,
Nuovo Cimento Soc. Ital. Fis., B
B1
,
123
126
.
53.
Manevitch LI (1999), Complex representation of dynamics of coupled nonlinear oscillators, Math Models of Non-Lin Excitations Transfer, Dyn and Control in Condensed Syst and Other Media, Kluwer, New York, 269–300.
54.
Fedoryuk MV (1989), Aymptotic methods in analysis, Analysis 1, Integral Represas Math, RV Gamkrelidze ed. SWAP Enc Math Sc 13, Springer, Berlin, New York.
55.
Malinetskii GG (1997), Chaos, Structures, Numerical Simulation: Introduction to Nonlinear Dynamics (in Russian), Nauka, Moscow.
56.
Sanders JA and Verhulst F (1985), Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York.
57.
Schult
DA
(
1999
),
Matched asymptotic expansions and the closure problem for combustion waves
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
60
(
1
),
136
155
.
58.
Bruno AD (1989), Local Methods in Nonlinear Differential Equations, Springer-Verlag, New York.
59.
Bruno AD (2000a), Power Geometry in Algebraic and Differential Equations, Elsevier, Amsterdam.
60.
Bruno
AD
(
2000b
),
Self-similar solutions and power geometry
,
Russ Math Sur
55
(
1
),
1
42
.
61.
Kolokoltsov VN and Maslov VP (1997), Idempotent Analysis and Applications, Kluwer, Dordrecht.
62.
Litvinov
GL
,
Maslov
VP
, and
Shpiz
GB
(
1998
),
Linear functionals on idempotent spaces: an algebraic approach
,
Dokl. Math.
58
,
389
391
.
63.
Maslov VP and Samborskii SN (eds) (1992), Idempotent Analysis, Adv in Sov Math 13, AMS, Providence RI.
64.
Barantsev RG (1965b), Lectures in Transonic Gasdynamics, (in Russian), LSU, Leningrad.
65.
Barantsev
RG
,
Mikhailova
IA
, and
Isitelov
IM
(
1961
),
On determination of orders of perturbating functions in the method of small perturbations (in Russian
),
Ing J
1, 2
,
69
81
.
66.
Barantsev RG and Engelgart VN (1987), Asymptotic Methods in Fluid Dynamics (in Russian), LSU, Leningrad.
67.
Barantsev RG (1981), Asymptotic methods in rarefied gas dynamics, Results in Sci and Technology. Fluid Mech. 14, VINITI, Moscow, 3–65 (in Russian).
68.
Barantsev RG (1985), Analytical studies of gas-surface interaction, Rarefied Gas Dynamics, Proc 13th Int Symp in Novosibirsk 1, Plenum Press, NY, 645–652.
69.
Alexeeva EV and Barantsev RG (1976), Local method of the aerodynamic calculation in rarefied gas (in Russian), LSU, Leningrad.
70.
Barantsev RG and Fedorova VM (1989), Singularities of the local theory for thin axisymmetric bodies (in Russian), Vestnik Leningr Univ, Ser 1, 2, 40–42.
71.
Barantsev RG (1976), On asymptotology (in Russian), Vestnik Leningr Univ 1, 69–77.
72.
Alexeeva EV, Barantsev RG, and Pashkevich DA (1996), Using of the Pade´ approximants to temperature calculation in a hypersonic boundary layer (in Russian), Heat-Mass-Exchange, Minsk, 1, 1, 114–118.
73.
Alexeeva EV, Barantsev RG, and Shatrov AV (1996), Combination of temperature asymptotics in the boundary layer, Vestnik SPb Univ. Ser 1, 2, 96–99 (in Russian).
74.
Barantsev RG, Pashkevich DA, and Shatrov AV (1999), Combination of asymptotics in the boundary layer of reacting gas mixture, 5th Conf on Dynamical Systems Theory and Applications, Ło´dz´ 137–140.
75.
Anolik MV and Barantsev RG (1998), Combination of asymptotics in the Knudsen layer, II: Testing, Rarefied Gas Dynamics, Proc 21st Int Symp Book of Abstracts, Marseille, 2, 75–76.
76.
Nazarov SA and Plamenevsky BA (1994), Elliptic Problems in Domain with Picewise Smooth Boundaries, Walter de Gruyder, Berlin.
77.
Il’in AM (1992), Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, AMS, Providence RI.
78.
Goldenfeld N, Martin O, and Oono Y (1991), Asymptotics of partial differential equations and the renormalisation group, Asymp Beyond All Orders, M Segur et al. (eds) Plenum Press, NY.
79.
Pilipchuk
VN
and
Ibrahim
RA
(
1999
),
Application of the Lie group transfromations to nonlinear dynamical systems
,
ASME J. Appl. Mech.
66
,
439
447
.
80.
Zhuravlev
VPh
(
1986
),
The application of monomial Lie groups to the problem of asymptotically integrating equations of mechanics
,
PMM J. Appl. Math. Mech.
50
,
349
352
.
81.
Marchuk GI, Agoshkov VI, and Shutyaev VP (1996), Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press, Boca Raton FL.
82.
Berdichevsky
VL
(
1979
),
Variational-asymptotic method of constructing a theory of shells
,
PMM J. Appl. Math. Mech.
43
(
4
),
711
736
.
83.
Bosley
DL
(
1996a
),
A technique for the numerical verification of asymptotic expansions
,
SIAM Rev.
38
(
1
),
128
135
.
84.
Bosley
DL
(
1996b
),
An improved matching procedure for transient resonance layers in weakly nonlinear oscillatory systems
,
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
56
(
2
),
420
445
.
85.
Morrison
JA
(
1966
),
Comparison of the modified method of averaging and the two variable expansion procedure
,
SIAM Rev.
8
,
66
70
.
86.
Zwillinger D (1989), Handbook of Differential Equations, Academic Press, New York.
87.
Babicˇ VM and Buldirev VS (1991), Short-Wavelength Diffraction Theory-Asymptotic Methods, Springer-Verlag, Berlin.
88.
Feshchenko SF, Shkil’Nl, and Nikolenko LD (1967), Asymptotic Methods in the Theory of Linear Differential Equations, Elsevier, New York.
89.
Fedoryuk MV (1993), Asymptotic Analysis. Linear Ordinary Differential Equations, Springer, Berlin.
90.
Lomov SA (1992), Introduction to the General Theory of Singular Perturbations, AMS, Providence RI.
91.
Trenogin
VA
(
1970
),
The development and application of the asymptotic method of Lyusternik and Vishik
,
Russ. Math. Surveys
25
(
4
),
119
156
.
92.
Vishik
MI
and
Lyusternik
LA
(
1960
),
The asymptotic behavior of solutions of linear differential equations with large or quickly changing coefficients and boundary conditions
,
Russ. Math. Surveys
15
(
4
),
23
91
.
93.
Vishik
MI
and
Lyusternik
LA
(
1962
),
Regular degeneration and boundary layer for linear differential equations with small parameters
,
Am. Math. Surv. Transl.
2
(
20
),
239
364
.
94.
Eckhaus W (1979), Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam.
95.
Eckhaus
W
(
1994
),
Fundamental concepts of matching
,
SIAM Rev.
36
(
3
),
431
439
.
96.
Berg Van den
I
(
1987
),
Nonstandard Asymptotic Analysis
,
Lect Notes Math
1249
,
810
884
.
97.
Jones DS (1997), Introduction to Asymptotics, World Scientific, Singapore etc.
98.
Lutz R and Gose M (1981), Nonstandard Analysis: A Practical Guide with Applications, Springer-Verlag, Berlin.
99.
Eckhaus
W
(
1983
),
Relaxation oscillations, including a standard chase on French ducks
,
Lect. Notes Math.
985
,
449
494
.  
You do not currently have access to this content.