Abstract

In biological adhesion systems, it is often observed that organisms climb on curved surfaces by controlling the relaxation and contraction of their muscles. In this article, we propose a general model for V-peeling on an arc-shaped substrate based on Griffith's energy release theory. The developed model can handle V-peeling problems on arc-shaped substrates with arbitrary initial configurations and considers the effects of prestretching in the bonded segment. When the substrate radius and initial peeling angle are relatively large, the results approach those obtained for flat substrates. However, due to the constraints of the substrate size and its active alteration of the peeling angle, a steady state, as seen on flat substrates, does not occur during the peeling process. Prestress has a certain inhibitory effect on the initiation of delamination, but once delamination begins, the presence of prestress promotes it. Meanwhile, the same degree of prestretch has a more pronounced effect on enhancing the peel resistance of structures with smaller curvatures, and prestretch further amplifies the differences between arc-shaped and flat substrates. The article also discusses the impact of variations in different parameters on energy. The conclusions drawn in this study have implications for understanding biological adhesion and designing multilayered structures.

References

1.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
2.
Pennisi
,
E.
,
2000
, “
Biomechanics – Geckos Climb by the Hairs of Their Toes
,”
Science
,
288
(
5472
), pp.
1717
1718
.
3.
Li
,
M.
,
Mao
,
A. R.
,
Guan
,
Q. W.
, and
Saiz
,
E.
,
2024
, “
Nature-Inspired Adhesive Systems
,”
Chem. Soc. Rev.
,
53
(
16
), pp.
8240
8305
.
4.
Ijspeert
,
A. J.
,
2014
, “
Biorobotics: Using Robots to Emulate and Investigate Agile Locomotion
,”
Science
,
346
(
6206
), pp.
196
203
.
5.
Xie
,
Z. X.
,
Domel
,
A. G.
,
An
,
N.
,
Green
,
C.
,
Gong
,
Z. Y.
,
Wang
,
T. M.
,
Knubben
,
E. M.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wen
,
L.
,
2020
, “
Octopus Arm-Inspired Tapered Soft Actuators With Suckers for Improved Grasping
,”
Soft. Robot.
,
7
(
5
), pp.
639
648
.
6.
Yin
,
H. B.
,
Ma
,
Y. J.
, and
Feng
,
X.
,
2024
, “
Rate-Dependent Peeling Behavior of the Viscoelastic Film-Substrate System
,”
Int. J. Solids. Struct.
,
286
, p.
112588
.
7.
Li
,
C. L.
,
Luo
,
H. Y.
,
Lin
,
X. Y.
,
Zhang
,
S.
, and
Song
,
J. Z.
,
2024
, “
Laser-Driven Noncontact Bubble Transfer Printing via a Hydrogel Composite Stamp
,”
Proc. Natl. Acad. Sci.
,
121
(
5
), p.
e2318739121
.
8.
Jian
,
W.
,
Yin
,
H. B.
,
Chen
,
Y.
, and
Feng
,
X.
,
2024
, “
Competing Behavior of Interface Delamination and Wafer Cracking During Peeling Film From Ultra-Thin Wafer
,”
Int. J. Solids. Struct.
,
305
, p.
113058
.
9.
Chen
,
X. Y.
,
Jian
,
W.
,
Wang
,
Z. J.
,
Ai
,
J.
,
Kang
,
Y.
,
Sun
,
P. C.
,
Wang
,
Z. H.
, et al
,
2023
, “
Wrap-Like Transfer Printing for Three-Dimensional Curvy Electronics
,”
Sci. Adv.
,
9
(
30
), p.
eadi0357
.
10.
Wang
,
Y. S.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2024
, “
The Peeling Behavior of Film/Substrate Systems With Periodic and Discontinuous Bonding
,”
Eng. Fract. Mech.
,
310
, p.
110518
.
11.
Jian
,
W.
,
Wang
,
Z. X.
,
Jin
,
P.
,
Zhu
,
L. J.
,
Chen
,
Y.
, and
Feng
,
X.
,
2023
, “
Subsurface Damage and Bending Strength Analysis for Ultra-Thin and Flexible Silicon Chips
,”
Sci. China-Technol. Sci.
,
66
(
1
), pp.
215
222
.
12.
Wang
,
Y. S.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2025
, “
Peeling Behavior of a Discontinuously Adhered Film/Substrate System Within Finite Deflection
,”
Int. J. Solids. Struct.
,
309
, p.
113207
.
13.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling – Elastic Term
,”
J. Phys. D. Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
14.
Wolff
,
J. O.
, and
Herberstein
,
M. E.
,
2017
, “
Three-Dimensional Printing Spiders: Back-and-Forth Glue Application Yields Silk Anchorages With High Pull-Off Resistance Under Varying Loading Situations
,”
J. R. Soc. Interface
,
14
(
127
), p.
20160783
.
15.
Gent
,
A. N.
, and
Kaang
,
S.
,
1986
, “
Pull-Off Forces for Adhesive Tapes
,”
J. Appl. Polym. Sci.
,
32
(
4
), pp.
4689
4700
.
16.
Afferrante
,
L.
,
Carbone
,
G.
,
Demelio
,
G.
, and
Pugno
,
N.
,
2013
, “
Adhesion of Elastic Thin Films: Double Peeling of Tapes Versus Axisymmetric Peeling of Membranes
,”
Tribol. Lett.
,
52
(
3
), pp.
439
447
.
17.
Gialamas
,
P.
,
Völker
,
B.
,
Collino
,
R. R.
,
Begley
,
M. R.
, and
McMeeking
,
R. M.
,
2014
, “
Peeling of an Elastic Membrane Tape Adhered to a Substrate by a Uniform Cohesive Traction
,”
Int. J. Solids. Struct.
,
51
(
18
), pp.
3003
3011
.
18.
Putignano
,
C.
,
Afferrante
,
L.
,
Mangialardi
,
L.
, and
Carbone
,
G.
,
2014
, “
Equilibrium States and Stability of Pre-Tensioned Adhesive Tapes
,”
Beilstein. J. Nanotech.
,
5
, pp.
1725
1731
.
19.
Menga
,
N.
,
Afferrante
,
L.
,
Pugno
,
N. M.
, and
Carbone
,
G.
,
2018
, “
The Multiple V-Shaped Double Peeling of Elastic Thin Films From Elastic Soft Substrates
,”
J. Mech. Phys. Solids
,
113
, pp.
56
64
.
20.
Menga
,
N.
,
Dini
,
D.
, and
Carbone
,
G.
,
2020
, “
Tuning the Periodic V-Peeling Behavior of Elastic Tapes Applied to Thin Compliant Substrates
,”
Int. J. Mech. Sci.
,
170
, p.
105331
.
21.
Ceglie
,
M.
,
Menga
,
N.
, and
Carbone
,
G.
,
2024
, “
Modelling the Non-Steady Peeling of Viscoelastic Tapes
,”
Int. J. Mech. Sci.
,
267
, p.
108982
.
22.
Ozer
,
A.
,
2015
, “
The Effect of Substrate Roughness on Tape Peeling
,”
Int. J. Adhes. Adhes.
,
62
, pp.
14
17
.
23.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2015
, “
Peeling Behavior of a Thin-Film on a Corrugated Surface
,”
Int. J. Solids. Struct.
,
60–61
, pp.
60
65
.
24.
Ma
,
X. J.
,
Long
,
H.
, and
Wei
,
Y. G.
,
2023
, “
Self-Debonding of Adhesive Thin Films on Convex Cylindrical Surfaces and Spherical Surfaces
,”
ASME J. Appl. Mech.
,
90
(
5
), p.
051005
.
25.
Deng
,
W. L.
, and
Kesari
,
H.
,
2021
, “
Angle-Independent Optimal Adhesion in Plane Peeling of Thin Elastic Films at Large Surface Roughnesses
,”
J. Mech. Phys. Solids
,
148
, p.
104270
.
26.
Xie
,
Y.
,
Wu
,
Y.
,
Wei
,
Z. X.
,
Lin
,
J.
, and
Qian
,
J.
,
2024
, “
Harnessing Strong and Asymmetric Adhesion by Combining Film Heterogeneity and Substrate Morphology
,”
Eur. J. Mech. A
,
103
, p.
105159
.
27.
Sun
,
C.
,
Sun
,
J.
,
Jia
,
F.
,
Liu
,
Y. J.
, and
Leng
,
J. S.
,
2023
, “
V-Shaped Double Peeling of Films From Curved Rigid Substrates
,”
Extreme. Mech. Lett.
,
64
, p.
102090
.
28.
Suhir
,
E.
, and
Nicolics
,
J.
,
2014
, “
Analysis of a Bow-Free Prestressed Test Specimen
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
114502
.
29.
Hu
,
J. S.
, and
Wang
,
B. L.
,
2021
, “
Enhanced Fatigue Performance of Auxetic Honeycomb/Substrate Structures Under Thermal Cycling
,”
Int. J. Mech. Sci.
,
199
, p.
106432
.
30.
Liu
,
C.
,
Cui
,
Y. J.
,
Wang
,
K. F.
, and
Wang
,
B. L.
,
2023
, “
Interlaminar Mechanical Performance of a Multi-Layered Device
,”
Appl. Math. Model.
,
122
, pp.
242
264
.
31.
Chen
,
Y. C.
, and
Crosby
,
A. J.
,
2014
, “
High Aspect Ratio Wrinkles via Substrate Prestretch
,”
Adv. Mater.
,
26
(
32
), pp.
5626
5631
.
32.
Oyewole
,
O. K.
,
Yu
,
D.
,
Du
,
J.
,
Asare
,
J.
,
Oyewole
,
D. O.
,
Anye
,
V. C.
,
Fashina
,
A.
,
Kana
,
M. G. Z.
, and
Soboyejo
,
W. O.
,
2015
, “
Micro-Wrinkling and Delamination-Induced Buckling of Stretchable Electronic Structures
,”
J. Appl. Phys.
,
117
(
23
), p.
235501
.
33.
Zhang
,
Q. T.
, and
Yin
,
H.
,
2018
, “
Spontaneous Buckling-Driven Periodic Delamination of Thin Films on Soft Substrates Under Large Compression
,”
J. Mech. Phys. Solids
,
118
, pp.
40
57
.
34.
Xiang
,
J. X.
,
Guo
,
J. J.
,
Li
,
B.
,
Li
,
Y. W.
,
Ouyang
,
L. H.
,
Shui
,
L. Q.
, and
Liu
,
Z.
,
2021
, “
Arbitrarily Patterned Active Wrinkles in Highly Stretched Substrate-Free Dielectric Elastic Membrane
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021004
.
35.
Chen
,
B.
,
Wu
,
P. D.
, and
Gao
,
H. J.
,
2009
, “
Pre-Tension Generates Strongly Reversible Adhesion of a Spatula pad on Substrate
,”
J. R. Soc. Interface
,
6
(
35
), pp.
529
537
.
36.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2012
, “
Effect of Pre-Tension on the Peeling Behavior of a Bio-Inspired Nano-Film and a Hierarchical Adhesive Structure
,”
Appl. Phys. Lett.
,
101
(
16
), p.
163702
.
37.
Ceglie
,
M.
,
Menga
,
N.
, and
Carbone
,
G.
,
2022
, “
The Role of Interfacial Friction on the Peeling of Thin Viscoelastic Tapes
,”
J. Mech. Phys. Solids
,
159
, p.
104706
.
38.
Gent
,
A. N.
, and
Hamed
,
G. R.
,
1977
, “
Peel Mechanics for an Elastic-Plastic Adherend
,”
J. Appl. Polym. Sci.
,
21
(
10
), pp.
2817
2831
.
39.
Lin
,
J.
,
Zheng
,
S. Y.
,
Xiao
,
R.
,
Yin
,
J.
,
Wu
,
Z. L.
,
Zheng
,
Q.
, and
Qian
,
J.
,
2020
, “
Constitutive Behaviors of Tough Physical Hydrogels With Dynamic Metal-Coordinated Bonds
,”
J. Mech. Phys. Solids
,
139
, p.
103915
.
40.
Lin
,
J.
,
Li
,
H. G.
,
Zhu
,
F. B.
,
Ge
,
Q.
,
Qian
,
J.
, and
Xiao
,
R.
,
2023
, “
Network Alteration of Cyclically Loaded Elastomers Mediated by Dynamic Bonds
,”
J. Mech. Phys. Solids
,
179
, p.
105400
.
41.
Pugno
,
N. M.
,
2011
, “
The Theory of Multiple Peeling
,”
Int. J. Fract.
,
171
(
2
), pp.
185
193
.
42.
Fraldi
,
M.
,
Palumbo
,
S.
,
Carotenuto
,
A. R.
,
Cutolo
,
A.
, and
Pugno
,
N. M.
,
2021
, “
Generalized Multiple Peeling Theory Uploading Hyperelasticity and Pre-Stress
,”
Extreme. Mech. Lett.
,
42
, p.
101085
.
You do not currently have access to this content.