Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Upon compression, some soft granular crystals undergo pattern transformation. Recent studies have unveiled that the underlying mechanism of this transformation is closely tied to microscopic instability, resulting in symmetry breaking. This intriguing phenomenon gives rise to unconventional mechanical properties in the granular crystals, paving the way for potential metamaterial application. However, no consistent approach has been reported for studying other unexplored transformable granular crystals. In this study, we present a systematic approach to identify a new set of pattern-transformable diatomic granular crystals induced by microscopic instability. After identifying the kinematic constraints for diatomic soft granular crystals, we have generated a list of feasible particle arrangements for instability-induced pattern transformation under compression. Instead of computationally intensive finite element models (FEMs) with continuum elements, we adopt a simplified mass-spring model derived from granular contact networks to efficiently evaluate these feasible particle arrangements for pattern transformation. Our numerical analysis encompasses quasi-static analysis and microscopic/macroscopic instability analyses within the framework of linear perturbation. Subsequently, the pattern transformation of the identified particle arrangements is confirmed through quasi-static analyses employing detailed finite element (FE) simulations with continuum elements. Additional numerical simulations with continuum elements reveal that the pattern transformations of particle arrangements are significantly influenced by the initial void volume and some transformed granular crystals may exhibit strong low-frequency directional phononic band-gaps, which were not observed in the initial granular crystals.

References

1.
Porter
,
M. A.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2015
, “
Granular Crystals: Nonlinear Dynamics Meets Materials Engineering
,”
Phys. Today
,
68
(
11
), pp.
44
50
.
2.
Musson
,
R. W.
, and
Carlson
,
W.
,
2014
, “
Simulation of Solitary Waves in a Monodisperse Granular Chain Using Comsol Multiphysics: Localized Plastic Deformation as a Dissipation Mechanism
,”
Granular Matter
,
16
(
4
), pp.
543
550
.
3.
Molinari
,
A.
, and
Daraio
,
C.
,
2009
, “
Stationary Shocks in Periodic Highly Nonlinear Granular Chains
,”
Phys. Rev. E
,
80
, p.
056602
.
4.
Boechler
,
N.
,
Theocharis
,
G.
,
Job
,
S.
,
Kevrekidis
,
P. G.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2010
, “
Discrete Breathers in One-Dimensional Diatomic Granular Crystals
,”
Phys. Rev. Lett.
,
104
, p.
244302
.
5.
Xu
,
J.
,
Li
,
Y.
,
Xiang
,
Y.
, and
Chen
,
X.
,
2013
, “
A Super Energy Mitigation Nanostructure at High Impact Speed Based on Buckyball System
,”
PLoS One
,
8
, pp.
1
8
.
6.
Fu
,
K.
,
Zhao
,
Z.
, and
Jin
,
L.
,
2019
, “
Programmable Granular Metamaterials for Reusable Energy Absorption
,”
Adv. Funct. Mater.
,
29
(
32
), p.
1901258
.
7.
Li
,
K.
, and
Rizzo
,
P.
,
2015
, “
Energy Harvesting Using Arrays of Granular Chains and Solid Rods
,”
J. Appl. Phys.
,
117
(
21
), p.
215101
.
8.
Li
,
F.
,
Anzel
,
P.
,
Yang
,
J.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2014
, “
Granular Acoustic Switches and Logic Elements
,”
Nat. Commun.
,
5
, p.
5311
.
9.
Girardeau-Montaut
,
J.-P.
, and
Girardeau-Montaut
,
C.
,
2003
, “
Granular Matter Optics: Basic Principles, Properties and Applications of One-Dimensional Systems
,”
J. Opt. A: Pure Appl. Opt.
,
5
(
1
), p.
31
.
10.
Beloborodov
,
I. S.
,
Lopatin
,
A. V.
,
Vinokur
,
V. M.
, and
Efetov
,
K. B.
,
2007
, “
Granular Electronic Systems
,”
Rev. Mod. Phys.
,
79
, pp.
469
518
.
11.
Jalali
,
H.
, and
Rizzo
,
P.
,
2022
, “
On the Long-Term Performance of Solitary Wave-Based Transducers for Nondestructive Evaluation Applications
,”
ASME J. Nondestruct. Eval. Diagnost. Prognost. Eng. Syst.
,
5
(
4
), p.
041005
.
12.
Bratov
,
V.
,
Kuznetsov
,
S.
, and
Morozov
,
N.
,
2022
, “
Seismic Barriers Filled With Solid Elastic and Granular Materials: Comparative Analysis
,”
Math. Mech. Solids
,
27
(
9
), pp.
1761
1770
.
13.
Jalali
,
H.
,
Misra
,
R.
,
Dickerson
,
S. J.
, and
Rizzo
,
P.
,
2023
, “
Remote Wireless Monitoring of Localized Corrosion Using Compact Solitary Waves
,”
Struct. Health Monit.
,
22
(
3
), pp.
1876
1892
.
14.
Karuriya
,
A. N.
, and
Barthelat
,
F.
,
2023
, “
Granular Crystals as Strong and Fully Dense Architectured Materials
,”
Proc. Natl. Acad. Sci. U S A
,
120
(
1
), p.
e2215508120
.
15.
Herbold
,
E. B.
,
Kim
,
J.
,
Nesterenko
,
V. F.
,
Wang
,
S. Y.
, and
Daraio
,
C.
,
2009
, “
Pulse Propagation in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency Band-Gap
,”
Acta Mech.
,
205
(
1
), pp.
85
103
.
16.
Goncu
,
F.
,
Luding
,
S.
, and
Bertoldi
,
K.
,
2012
, “
Exploiting Pattern Transformation to Tune Phononic Band Gaps in a Two-Dimensional Granular Crystal
,”
J. Acoust. Soc. Am.
,
131
(
6
), p.
EL475
.
17.
Allein
,
F.
,
Tournat
,
V.
,
Gusev
,
V. E.
, and
Theocharis
,
G.
,
2016
, “
Tunable Magneto-granular Phononic Crystals
,”
Appl. Phys. Lett.
,
108
(
16
), p.
161903
.
18.
Jain
,
N.
, and
Shim
,
J.
,
2020
, “
Numerical Study on the Phononic Band-Structure of Soft Granular Crystals
,”
Int. J. Solids Struct.
,
191
, pp.
173
186
.
19.
Goncu
,
F.
,
Willshaw
,
S.
,
Shim
,
J.
,
Cusack
,
J.
,
Luding
,
S.
,
Mullin
,
T.
, and
Bertoldi
,
K.
,
2011
, “
Deformation Induced Pattern Transformation in a Soft Granular Crystal
,”
Soft Matter
,
7
, pp.
2321
2324
.
20.
Rudra
,
B.
,
Jiang
,
Y.
,
Li
,
Y.
, and
Shim
,
J.
,
2017
, “
A Class of Diatomic 2-D Soft Granular Crystals Undergoing Pattern Transformations
,”
Soft Matter
,
13
(
35
), pp.
5824
5831
.
21.
Jain
,
N.
, and
Shim
,
J.
,
2022
, “
On the Mechanism of Pattern Transformations in Soft Granular Crystals
,”
Int. J. Mech. Sci.
,
225
, p.
107324
.
22.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Ou
,
C.
,
Shian
,
S. S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
, pp.
4935
4942
.
23.
Mohamed
,
A.
, and
Gutierrez
,
M.
,
2010
, “
Comprehensive Study of the Effects of Rolling Resistance on the Stress–Strain and Strain Localization Behavior of Granular Materials
,”
Granular Matter
,
12
, pp.
527
541
.
24.
Zhou
,
B.
,
Huang
,
R.
,
Wang
,
H.
, and
Wang
,
J.
,
2013
, “
DEM Investigation of Particle Anti-rotation Effects on the Micromechanical Response of Granular Materials
,”
Granular Matter
,
15
, pp.
315
326
.
25.
Danielsson
,
M.
,
Parks
,
D.
, and
Boyce
,
M.
,
2002
, “
Three-Dimensional Micromechanical Modeling of Voided Polymeric Materials
,”
J. Mech. Phys. Solids
,
50
(
2
), pp.
351
379
.
26.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
.
27.
Bertoldi
,
K.
,
Boyce
,
M.
,
Deschanel
,
S.
,
Prange
,
S.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
.
28.
Geymonat
,
G.
,
Muller
,
S.
, and
Triantafyllidis
,
N.
,
1993
, “
Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Rational Mech. Anal.
,
122
, pp.
231
290
.
29.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
1983
,
Mathematical Foundations of Elasticity
,
Dover
,
Mineola, NY
.
30.
Kennedy
,
T.
,
2006
, “
Compact Packings of the Plane With Two Sizes of Discs
,”
Discrete Comput. Geom.
,
35
(
2
), pp.
255
267
.
31.
Likos
,
C. N.
, and
Henley
,
C. L.
,
1993
, “
Complex Alloy Phases for Binary Hard-Disc Mixtures
,”
Philos. Mag. B
,
68
(
1
), pp.
85
113
.
32.
Nesterenko
,
V. F.
,
2001
,
Dynamics of Heterogeneous Materials
,
Springer
,
New York
.
33.
Pozharskiy
,
D.
,
Zhang
,
Y.
,
Williams
,
M. O.
,
McFarland
,
D. M.
,
Kevrekidis
,
P. G.
,
Vakakis
,
A. F.
, and
Kevrekidis
,
I. G.
,
2015
, “
Nonlinear Resonances and Antiresonances of a Forced Sonic Vacuum
,”
Phys. Rev. E
,
92
, p.
063203
.
34.
Minagawa
,
S.
, and
Nemat-Nasser
,
S.
,
1977
, “
On Harmonic Waves in Layered Composites
,”
ASME J. Appl. Mech.
,
44
(
4
), p.
689
.
35.
Haque
,
A.
, and
Shim
,
J.
,
2016
, “
On Spatial Aliasing in the Phononic Band-Structure of Layered Composites
,”
Int. J. Solids Struct.
,
96
, pp.
380
392
.
36.
Haque
,
A.
,
Ghachi
,
R.
,
Alnahhal
,
W.
,
Aref
,
A.
, and
Shim
,
J.
,
2017
, “
Generalized Spatial Aliasing Solution for the Dispersion Analysis of Infinitely Periodic Multilayered Composites Using the Finite Element Method
,”
J. Vib. Acoust.
,
139
, p.
051010
.
37.
Li
,
J.
,
Shim
,
J.
,
Deng
,
J.
,
Overvelde
,
J. T.
,
Zhu
,
X.
,
Bertoldi
,
K.
, and
Yang
,
S.
,
2012
, “
Switching Periodic Membranes Via Pattern Transformation and Shape Memory Effect
,”
Soft Matter
,
8
, pp.
10322
10328
.
38.
Willis
,
J. R.
,
2011
, “
Effective Constitutive Relations for Waves in Composites and Metamaterials
,”
Proc. R. Soc. A
,
467
, pp.
1865
1879
.
39.
Muhlestein
,
M. B.
,
Sieck
,
C. F.
,
Wilson
,
P. S.
, and
Haberman
,
M. R.
,
2017
, “
Experimental Evidence of Willis Coupling in a One-Dimensional Effective Material Element
,”
Nat. Commun.
,
8
, p.
15625
.
40.
Li
,
Z.
,
Han
,
P. H.
, and
Hu
,
G.
,
2024
, “
Willis Dynamic Homogenization Method for Acoustic Metamaterials Based on Multiple Scattering Theory
,”
J. Mech. Phys. Solids
,
189
, p.
105692
.
41.
Meng
,
S.
, and
Guzina
,
B. B.
,
2018
, “
On the Dynamic Homogenization of Periodic Media: Willis’ Approach Versus Two-Scale Paradigm
,”
Proc. R. Soc. A.
,
474
, p.
20170638
.
You do not currently have access to this content.