Abstract

The flexible piezoelectric energy harvester (FPEH), as an effective strategy for long-term power supply of implantable and wearable electronics, requires high areal output energy density, low mechanical stiffness, and high energy efficiency, simultaneously. The widely adopted sandwich FPEH, consisting of one relatively hard substrate sandwiched between two piezoelectric films, can provide a high areal output energy density, but also high mechanical stiffness and low energy efficiency due to its energy-wasting deformation of the hard substrate. Here, we propose a novel optimal soft-substrate sandwich FPEH with designs of sufficient length and optimized Young’s modulus of the substrate, which is much smaller than that of the piezoelectric film. A sandwich beam model considering both the bending and shearing of the soft substrate and the one-way coupling of the piezoelectric effect was adopted for the theoretical analysis and optimal design. The optimal soft-substrate sandwich FPEH exhibits greatly improved overall performance with a 33% increase in areal output energy density, a 51% reduction in mechanical stiffness, and a 177% increase in energy efficiency, simultaneously. Systematic theoretical analysis is performed to illustrate the mechanism and guide the optimal design. The novel optimal soft-substrate sandwich FPEH is then applied to harvesting energy from various living subjects. This optimal design can be extended to other types of mechanical energy harvesters with a similar laminated structure.

References

1.
Yacoub
,
M. H.
, and
McLeod
,
C.
,
2018
, “
The Expanding Role of Implantable Devices to Monitor Heart Failure and Pulmonary Hypertension
,”
Nat. Rev. Cardiol.
,
15
(
12
), pp.
770
779
.
2.
Song
,
E.
,
Li
,
J.
,
Won
,
S. M.
,
Bai
,
W.
, and
Rogers
,
J. A.
,
2020
, “
Materials for Flexible Bioelectronic Systems as Chronic Neural Interfaces
,”
Nat. Mater.
,
19
(
6
), pp.
590
603
.
3.
Wang
,
X.
,
Shi
,
Y.
,
Yang
,
P.
,
Tao
,
X.
,
Li
,
S.
,
Lei
,
R.
,
Liu
,
Z.
,
Wang
,
Z. L.
, and
Chen
,
X.
,
2022
, “
Fish-Wearable Data Snooping Platform for Underwater Energy Harvesting and Fish Behavior Monitoring
,”
Small
,
18
(
10
), p.
2107232
.
4.
Mancuso
,
K. A.
,
Fylling
,
M. A.
,
Bishop
,
C. A.
,
Hodges
,
K. E.
,
Lancaster
,
M. B.
, and
Stone
,
K. R.
,
2021
, “
Migration Ecology of Western Gray Catbirds
,”
Movement Ecol.
,
9
(
1
), p.
10
.
5.
Zheng
,
Q.
,
Tang
,
Q.
,
Wang
,
Z. L.
, and
Li
,
Z.
,
2021
, “
Self-Powered Cardiovascular Electronic Devices and Systems
,”
Nat. Rev. Cardiol.
,
18
(
1
), pp.
7
21
.
6.
Hussey
,
N. E.
,
Kessel
,
S. T.
,
Aarestrup
,
K.
,
Cooke
,
S. J.
,
Cowley
,
P. D.
,
Fisk
,
A. T.
,
Harcourt
,
R. G.
, et al
,
2015
, “
Aquatic Animal Telemetry: A Panoramic Window Into the Underwater World
,”
Science
,
348
(
6240
), p.
1255642
.
7.
Ahn
,
Y.
,
Song
,
S.
, and
Yun
,
K.-S.
,
2015
, “
Woven Flexible Textile Structure for Wearable Power-Generating Tactile Sensor Array
,”
Smart Mater. Struct.
,
24
(
7
), p.
075002
.
8.
Chen
,
D.
,
Chen
,
K.
,
Brown
,
K.
,
Hang
,
A.
, and
Zhang
,
J. X. J.
,
2017
, “
Liquid-Phase Tuning of Porous PVDF-TrFE Film on Flexible Substrate for Energy Harvesting
,”
Appl. Phys. Lett.
,
110
(
15
), p.
153902
.
9.
Dagdeviren
,
C.
,
Yang
,
B. D.
,
Su
,
Y.
,
Tran
,
P. L.
,
Joe
,
P.
,
Anderson
,
E.
,
Xia
,
J.
, et al
,
2014
, “
Conformal Piezoelectric Energy Harvesting and Storage From Motions of the Heart, Lung, and Diaphragm
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
5
), pp.
1927
1932
.
10.
Hyeon
,
D. Y.
, and
Park
,
K.-I.
,
2019
, “
Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate
,”
Energy Technol.
,
7
(
10
), p.
1900638
.
11.
Khan
,
M. B.
,
Kim
,
D. H.
,
Han
,
J. H.
,
Saif
,
H.
,
Lee
,
H.
,
Lee
,
Y.
,
Kim
,
M.
, et al
,
2019
, “
Performance Improvement of Flexible Piezoelectric Energy Harvester for Irregular Human Motion With Energy Extraction Enhancement Circuit
,”
Nano Energy
,
58
, pp.
211
219
.
12.
Hwang
,
G.-T.
,
Park
,
H.
,
Lee
,
J.-H.
,
Oh
,
S.
,
Park
,
K.-I.
,
Byun
,
M.
,
Park
,
H.
, et al
,
2014
, “
Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester
,”
Adv. Mater.
,
26
(
28
), pp.
4880
4887
.
13.
Li
,
N.
,
Yi
,
Z.
,
Ma
,
Y.
,
Xie
,
F.
,
Huang
,
Y.
,
Tian
,
Y.
,
Dong
,
X.
, et al
,
2019
, “
Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat
,”
ACS Nano
,
13
(
3
), pp.
2822
2830
.
14.
Yang
,
R.
,
Qin
,
Y.
,
Dai
,
L.
, and
Wang
,
Z. L.
,
2009
, “
Power Generation With Laterally Packaged Piezoelectric Fine Wires
,”
Nat. Nanotechnol.
,
4
(
1
), pp.
34
39
.
15.
Sun
,
R.
,
Zhang
,
B.
,
Yang
,
L.
,
Zhang
,
W.
,
Farrow
,
I.
,
Scarpa
,
F.
, and
Rossiter
,
J.
,
2018
, “
Kirigami Stretchable Strain Sensors With Enhanced Piezoelectricity Induced by Topological Electrodes
,”
Appl. Phys. Lett.
,
112
(
25
), p.
251904
.
16.
Dong
,
L.
,
Closson
,
A. B.
,
Oglesby
,
M.
,
Escobedo
,
D.
,
Han
,
X.
,
Nie
,
Y.
,
Huang
,
S.
,
Feldman
,
M. D.
,
Chen
,
Z.
, and
Zhang
,
J. X. J.
,
2019
, “
In Vivo Cardiac Power Generation Enabled by an Integrated Helical Piezoelectric Pacemaker Lead
,”
Nano Energy
,
66
, p.
104085
.
17.
Dong
,
L.
,
Wen
,
C.
,
Liu
,
Y.
,
Xu
,
Z.
,
Closson
,
A. B.
,
Han
,
X.
,
Escobar
,
G. P.
, et al
,
2019
, “
Piezoelectric Buckled Beam Array on a Pacemaker Lead for Energy Harvesting
,”
Adv. Mater. Technol.
,
4
(
1
), p.
1800335
.
18.
Jeong
,
C. K.
,
Baek
,
C.
,
Kingon
,
A. I.
,
Park
,
K.-I.
, and
Kim
,
S.-H.
,
2018
, “
Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester
,”
Small
,
14
(
19
), p.
1704022
.
19.
Park
,
K.-I.
,
Son
,
J. H.
,
Hwang
,
G.-T.
,
Jeong
,
C. K.
,
Ryu
,
J.
,
Koo
,
M.
,
Choi
,
I.
, et al
,
2014
, “
Highly-Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates
,”
Adv. Mater.
,
26
(
16
), pp.
2514
2520
.
20.
Kim
,
D. H.
,
Shin
,
H. J.
,
Lee
,
H.
,
Jeong
,
C. K.
,
Park
,
H.
,
Hwang
,
G.-T.
,
Lee
,
H.-Y.
, et al
,
2017
, “
In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters
,”
Adv. Funct. Mater.
,
27
(
25
), p.
1700341
.
21.
Dagdeviren
,
C.
,
Li
,
Z.
, and
Wang
,
Z. L.
,
2017
, “
Energy Harvesting From the Animal/Human Body for Self-Powered Electronics
,”
Annu. Rev. Biomed. Eng.
,
19
(
1
), pp.
85
108
.
22.
Jung
,
W.-S.
,
Lee
,
M.-J.
,
Kang
,
M.-G.
,
Moon
,
H. G.
,
Yoon
,
S.-J.
,
Baek
,
S.-H.
, and
Kang
,
C.-Y.
,
2015
, “
Powerful Curved Piezoelectric Generator for Wearable Applications
,”
Nano Energy
,
13
, pp.
174
181
.
23.
Fu
,
J.
,
Hou
,
Y.
,
Zheng
,
M.
, and
Zhu
,
M.
,
2020
, “
Flexible Piezoelectric Energy Harvester With Extremely High Power Generation Capability by Sandwich Structure Design Strategy
,”
ACS Appl. Mater. Interfaces
,
12
(
8
), pp.
9766
9774
.
24.
Petritz
,
A.
,
Karner-Petritz
,
E.
,
Uemura
,
T.
,
Schäffner
,
P.
,
Araki
,
T.
,
Stadlober
,
B.
, and
Sekitani
,
T.
,
2021
, “
Imperceptible Energy Harvesting Device and Biomedical Sensor Based on Ultraflexible Ferroelectric Transducers and Organic Diodes
,”
Nat. Commun.
,
12
(
1
), p.
2399
.
25.
Yaqoob
,
U.
,
Habibur
,
R. M.
,
Sheeraz
,
M.
, and
Kim
,
H. C.
,
2019
, “
Realization of Self-Poled, High Performance, Flexible Piezoelectric Energy Harvester by Employing PDMS-rGO as Sandwich Layer Between P(VDF-TrFE)-PMN-PT Composite Sheets
,”
Compos. Part B: Eng.
,
159
, pp.
259
268
.
26.
Li
,
L.
,
Lin
,
H.
,
Qiao
,
S.
,
Zou
,
Y.
,
Danto
,
S.
,
Richardson
,
K.
,
Musgraves
,
J. D.
,
Lu
,
N.
, and
Hu
,
J.
,
2014
, “
Integrated Flexible Chalcogenide Glass Photonic Devices
,”
Nat. Photonics
,
8
(
8
), pp.
643
649
.
27.
Allen
,
H. G.
,
1969
,
Analysis and Design of Structural Sandwich Panels
, 1st ed.,
Pergamon Press
,
Oxford, New York
, pp.
1
7
.
28.
Jo
,
W.
,
Lee
,
H.
,
Lee
,
Y.
,
Bae
,
B.-S.
, and
Kim
,
T.-S.
,
2021
, “
Controlling Neutral Plane of Flexible Substrates by Asymmetric Impregnation of Glass Fabric for Protecting Brittle Films on Foldable Electronics
,”
Adv. Eng. Mater.
,
23
(
6
), p.
2001280
.
29.
Shi
,
Y.
,
Rogers
,
J. A.
,
Gao
,
C.
, and
Huang
,
Y.
,
2014
, “
Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
114501
.
30.
Lu
,
N.
,
Yang
,
S.
, and
Qiao
,
S.
,
2014
, “
Mechanics of Flexible Electronics and Photonics Based on Inorganic Micro- and Nanomaterials
,”
Conference on Micro- and Nanotechnology Sensors, Systems, and Applications VI, Baltimore, MD, May 5–9, Article No. 90831J
.
31.
Lee
,
T.-I.
,
Jo
,
W.
,
Kim
,
W.
,
Kim
,
J.-H.
,
Paik
,
K.-W.
, and
Kim
,
T.-S.
,
2019
, “
Direct Visualization of Cross-Sectional Strain Distribution in Flexible Devices
,”
ACS Appl. Mater. Interfaces
,
11
(
14
), pp.
13416
13422
.
32.
Li
,
S.
,
Su
,
Y.
, and
Li
,
R.
,
2016
, “
Splitting of the Neutral Mechanical Plane Depends on the Length of the Multi-Layer Structure of Flexible Electronics
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
472
(
2190
), p.
20160087
.
33.
Su
,
Y.
,
Li
,
S.
,
Huan
,
Y.
,
Li
,
R.
,
Zhang
,
Z.
,
Joe
,
P.
, and
Dagdeviren
,
C.
,
2017
, “
The Universal and Easy-to-Use Standard of Voltage Measurement for Quantifying the Performance of Piezoelectric Devices
,”
Extreme Mech. Lett.
,
15
, pp.
10
16
.
34.
Li
,
S.
,
Liu
,
X.
,
Li
,
R.
, and
Su
,
Y.
,
2017
, “
Shear Deformation Dominates in the Soft Adhesive Layers of the Laminated Structure of Flexible Electronics
,”
Int. J. Solids Struct.
,
110
, pp.
305
314
.
35.
Cohrs
,
N. H.
,
Petrou
,
A.
,
Loepfe
,
M.
,
Yliruka
,
M.
,
Schumacher
,
C. M.
,
Kohll
,
A. X.
,
Starck
,
C. T.
, et al
,
2017
, “
A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation
,”
Artif. Organs
,
41
(
10
), pp.
948
958
.
36.
Geen
,
G. R.
,
Robinson
,
R. A.
, and
Baillie
,
S. R.
,
2019
, “
Effects of Tracking Devices on Individual Birds—A Review of the Evidence
,”
J. Avian Biol.
,
50
(
2
), p.
e01823
.
You do not currently have access to this content.