A nonclassical model for circular Mindlin plates subjected to axisymmetric loading is developed using a modified couple stress theory. The equations of motion and boundary conditions are simultaneously obtained through a variational formulation based on Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike existing circular Mindlin plate models based on classical elasticity. In addition, both the stretching and bending of the plate are considered in the formulation. The current plate model reduces to the classical elasticity-based Mindlin plate model when the material length scale parameter is set to be zero. Additionally, the new circular Mindlin plate model recovers the circular Kirchhoff plate model as a special case. To illustrate the new model, the static bending problem of a clamped solid circular Mindlin plate subjected to an axisymmetrically distributed normal pressure is analytically solved by directly applying the new model and using the Fourier–Bessel series. The numerical results show that the deflection and rotation angle predicted by the new model are smaller than those predicted by the classical Mindlin plate model. It is further seen that the differences between the two sets of predicted values are significantly large when the plate thickness is small, but they are diminishing with the increase of the plate thickness.

References

1.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
, pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
2.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
, pp.
1060
1067
.10.1088/0960-1317/15/5/024
3.
Hoffman
,
O.
,
1964
, “
On Bending of Thin Elastic Plates in the Presence of Couple Stresses
,”
ASME J. Appl. Mech.
,
31
, pp.
706
707
.10.1115/1.3629737
4.
Mindlin
,
R. D.
,
1963
, “
Influence of Couple-Stresses on Stress Concentrations
,”
Exp. Mech.
,
3
, pp.
1
7
.10.1007/BF02327219
5.
Koiter
,
W. T.
,
1964
, “
Couple-Stresses in the Theory of Elasticity: I and II
,”
Proc. K. Ned. Akad. Wet B
,
67
, pp.
17
44
.
6.
Ellis
,
R. W.
, and
Smith
,
C. W.
,
1967
, “
A Thin-Plate Analysis and Experimental Evaluation of Couple-Stress Effects
,”
Exp. Mech.
,
7
, pp.
372
380
.10.1007/BF02326308
7.
Ariman
,
T.
,
1968
, “
On Circular Micropolar Plates
,”
Ing.-Arch.
,
37
, pp.
156
160
.10.1007/BF00532605
8.
Eringen
,
A. C.
,
1967
, “
Theory of Micropolar Plates
,”
ZAMP
,
18
, pp.
12
30
.10.1007/BF01593891
9.
Lazopoulos
,
K. A.
,
2004
, “
On the Gradient Strain Elasticity Theory of Plates
,”
Eur. J. Mech. A/Solids
,
23
, pp.
843
852
.10.1016/j.euromechsol.2004.04.005
10.
Altan
,
B. S.
, and
Aifantis
,
E. C.
,
1997
, “
On Some Aspects in the Special Theory of Gradient Elasticity
,”
J. Mech. Behav. Mater.
,
8
(
3
), pp.
231
282
.10.1515/JMBM.1997.8.3.231
11.
Gao
,
X.-L.
, and
Park
,
S. K.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
, pp.
7486
7499
.10.1016/j.ijsolstr.2007.04.022
12.
Gao
,
X.-L.
, and
Ma
,
H. M.
,
2010
, “
Solution of Eshelby's Inclusion Problem With a Bounded Domain and Eshelby's Tensor for a Spherical Inclusion in a Finite Spherical Matrix Based on a Simplified Strain Gradient Elasticity Theory
,”
J. Mech. Phys. Solids
,
58
, pp.
779
797
.10.1016/j.jmps.2010.01.006
13.
Gao
,
X.-L.
, and
Zhou
,
S. S.
,
2013
, “
Strain Gradient Solutions of Half-Space and Half-Plane Contact Problems
,”
ZAMP
,
64
(4), pp.
1363
1386
10.1007/s00033-012-0273-1.
14.
Papargyri-Beskou
,
S.
, and
Beskos
,
D. E.
,
2008
, “
Static, Stability and Dynamic Analysis of Gradient Elastic Flexural Kirchhoff Plates
,”
Arch. Appl. Mech.
,
78
, pp.
625
635
.10.1007/s00419-007-0166-5
15.
Papargyri-Beskou
,
S.
,
Giannakopoulos
,
A. E.
, and
Beskos
,
D. E.
,
2010
, “
Variational Analysis of Gradient Elastic Flexural Plates Under Static Loading
,”
Int. J. Solids Struct.
,
47
, pp.
2755
2766
.10.1016/j.ijsolstr.2010.06.003
16.
Lazopoulos
,
K. A.
,
2009
, “
On Bending of Strain Gradient Elastic Micro-Plates
,”
Mech. Res. Commun.
,
36
, pp.
777
783
.10.1016/j.mechrescom.2009.05.005
17.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.10.1063/1.332803
18.
Lu
,
P.
,
Zhang
,
P. Q.
,
Lee
,
H. P.
,
Wang
,
C. M.
, and
Reddy
,
J. N.
,
2007
, “
Non-Local Elastic Plate Theories
,”
Proc. R. Soc. A
,
463
, pp.
3225
3240
.10.1098/rspa.2007.1903
19.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
,
18
, pp.
1031
1036
.
20.
Tsiatas
,
G. C.
,
2009
, “
A New Kirchhoff Plate Model Based on a Modified Couple Stress Theory
,”
Int. J. Solids Struct.
,
46
, pp.
2757
2764
.10.1016/j.ijsolstr.2009.03.004
21.
Jomehzadeh
,
E.
,
Noori
,
H. R.
, and
Saidi
,
A. R.
,
2011
, “
The Size-Dependent Vibration Analysis of Micro-Plates Based on a Modified Couple Stress Theory
,”
Physica E
,
43
, pp.
877
883
.10.1016/j.physe.2010.11.005
22.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
, pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
23.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2008
, “
Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem
,”
ZAMP
,
59
, pp.
904
917
.10.1007/s00033-006-6073-8
24.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2011
, “
A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory
,”
Acta Mech.
,
220
, pp.
217
235
.10.1007/s00707-011-0480-4
25.
Gao
,
X.-L.
,
Huang
,
J. X.
, and
Reddy
,
J. N.
,
2013
, “
A Non-Classical Third-Order Shear Deformation Plate Model Based on a Modified Couple Stress Theory
,”
Acta Mech.
,
224
, pp.
2699
2718
.10.1007/s00707-013-0880-8
26.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2006
, “
Bernoulli-Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
, pp.
2355
2359
.10.1088/0960-1317/16/11/015
27.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
, pp.
3379
3391
.10.1016/j.jmps.2008.09.007
28.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2010
, “
A Non-Classical Reddy–Levinson Beam Model Based on a Modified Couple Stress Theory
,”
Int. J. Multiscale Comput. Eng.
,
8
, pp.
167
180
.10.1615/IntJMultCompEng.v8.i2.30
29.
Gao
,
X.-L.
, and
Mahmoud
,
F. F.
,
2013
, “
A New Bernoulli-Euler Beam Model Incorporating Microstructure and Surface Energy Effects
,”
ZAMP
(published online on 20 June 2013)10.1007/s00033-013-0343-z.
30.
Mindlin
,
R. D.
, and
Deresiewicz
,
H
,
1954
, “
Thickness-Shear and Flexural Vibrations of a Circular Disk
,”
J. Appl. Phys.
,
25
, pp.
1329
1332
.10.1063/1.1721554
31.
Deresiewicz
,
H.
, and
Mindlin
,
R. D.
,
1955
, “
Axially Symmetric Flexural Vibrations of a Circular Plate
,”
ASME J. Appl. Mech.
,
22
, pp.
86
88
.
32.
Jones
,
N.
, and
Gomes der Oliveira
,
J.
,
1980
, “
Dynamic Plastic Response of Circular Plates With Transverse Shear and Rotatory Inertia
,”
ASME J. Appl. Mech.
,
47
, pp.
27
34
.10.1115/1.3153633
33.
Kumar
,
K.
, and
Reddy
,
V. V. K.
,
1986
, “
Dynamic Plastic Response of Circular Plates With Transverse Shear
,”
ASME J. Appl. Mech.
,
53
, pp.
952
953
.10.1115/1.3171887
34.
Li
,
Q. M.
, and
Huang
,
Y.
,
1989
, “
Dynamic Plastic Response of Thin Circular Plates With Transverse Shear and Rotatory Inertia Subjected to Rectangular Pulse Loading
,”
Int. J. Impact Eng.
,
8
, pp.
219
228
.10.1016/0734-743X(89)90003-1
35.
Li
,
Q. M.
, and
Huang
,
Y.
,
1990
, “
Dynamic Plastic Response of Circular Plates With Transverse Shear
,”
ASME J. Appl. Mech.
,
57
, pp.
1077
1078
.10.1115/1.2897630
36.
Liew
,
K. M.
,
Han
,
J.-B.
, and
Xiao
,
Z. M.
,
1997
, “
Vibration Analysis of Circular Mindlin Plates Using the Differential Quadrature Method
,”
J. Sound Vib.
,
205
, pp.
617
630
.10.1006/jsvi.1997.1035
37.
Reddy
,
J. N.
,
Wang
,
C. M.
, and
Kitipornchai
,
S.
,
1999
, “
Axisymmetric Bending of Functionally Graded Circular and Annular Plates
,”
Eur. J. Mech. A/Solids
,
18
, pp.
185
199
.10.1016/S0997-7538(99)80011-4
38.
Ding
,
H.-J.
,
Chen
,
W. Q.
, and
Zhang
,
L.
,
2006
,
Elasticity of Transversely Isotropic Materials
,
Springer
,
Dordrecht, Germany.
39.
Li
,
X. Y.
,
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2008
, “
Elasticity Solutions for a Transversely Isotropic Functionally Graded Circular Plate Subject to an Axisymmetric Transverse Load
,”
Int. J. Solids Struct.
,
45
, pp.
191
210
.10.1016/j.ijsolstr.2007.07.023
40.
Anthoine
,
A.
,
2000
, “
Effect of Couple-Stresses on the Elastic Bending of Beams
,”
Int. J. Solids Struct.
,
37
, pp.
1003
1018
.10.1016/S0020-7683(98)00283-2
41.
Chong
,
A. C. M.
,
Yang
,
F.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2001
, “
Torsion and Bending of Micron-Scaled Structures
,”
J. Mater. Res.
,
16
, pp.
1052
1058
.10.1557/JMR.2001.0146
42.
Nikolov
,
S.
,
Han
,
C.-S.
, and
Raabe
,
D.
,
2007
, “
On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers
,”
Int. J. Solids Struct.
,
44
, pp.
1582
1592
.10.1016/j.ijsolstr.2006.06.039
43.
Sadd
,
M. H.
,
2009
,
Elasticity: Theory, Applications, and Numerics
, 2nd ed.,
Academic
,
Burlington, MA
.
44.
Stephen
,
N. G.
,
1997
, “
Mindlin Plate Theory: Best Shear Coefficient and Higher Spectra Validity
,”
J. Sound Vib.
,
202
, pp.
539
553
.10.1006/jsvi.1996.0885
45.
Liu
,
Y.
, and
Soh
,
C.-K.
,
2007
, “
Shear Correction for Mindlin Type Plate and Shell Elements
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
2789
2806
.10.1002/nme.1869
46.
Reddy
,
J. N.
,
2002
,
Energy Principles and Variational Methods in Applied Mechanics
, 2nd ed.,
Wiley
,
New York
.
47.
Kreyszig
,
E.
,
2011
,
Advanced Engineering Mathematics
, 10th ed.,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.