The mechanical deformation of an ideal thin-walled cylindrical shell is investigated in the presence of intersurface interactions with a planar rigid substrate. A Dugdale–Barenblatt–Maugis (DBM) cohesive zone approximation is introduced to simulate the convoluted surface force potential. Without loss of generality, the repulsive component of the surface forces is approximated by a linear soft-repulsion, and the attractive component is described by two essential variables, namely, surface force range and magnitude, which are allowed to vary. The nonlinear problem is solved numerically to generate the pressure distribution within the contact, the deformed membrane profiles, and the adhesion-delamination mechanics, which are distinctly different from the classical solid cylinder adhesion models. The model has wide applications in cell adhesion and nanostructures.

References

1.
Hertz
,
H.
, 1896,
miscellaneous papers
,
Macmillian
,
London
.
2.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
301
313
.
3.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
4.
Tabor
,
D.
, 1977, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
2
13
.
5.
Maugis
,
D.
, 1992, “
The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
, pp.
243
269
.
6.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C. Y.
, and
Kramer
,
K. J.
, 1996, “
Adhesive Contact of Cylindrical Lens and a Flat Sheet
,”
J. Appl. Phys.
,
80
(
1
), pp.
30
37
.
7.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 2008, “
A Maugis Analysis of Adhesive Line Contact
,”
J. Phys. D
,
41
, p.
155315
.
8.
Wu
,
J.-J.
, 2009, “
Adhesive Contact Between a Cylinder and a Half-Space
,”
J. Phys. D: Appl. Phys.
,
42
, p.
155302
.
9.
Plaut
,
R. H.
, 2009, “
Linearly Elastic Annular and Circular Membranes Under Radial, Transverse, and Torsional Loading. Part I: Large Unwrinkled Axisymmetric Deformations
,”
Acta Mech.
,
202
, pp.
79
99
.
10.
Plaut
,
R. H.
,
Suherman
,
S.
,
Dillard
,
D. A.
,
Williams
,
B. E.
, and
Watson
,
L. T.
, 1999, “
Deflections and Buckling of a Bent Elastica in Contact With a Flat Surface
,”
Int. J. Solids Struct.
,
36
, pp.
1209
1229
.
11.
Plaut
,
R. H.
,
White
,
S. A.
, and
Dillard
,
D. A.
, 2003, “
Effect of Work of Adhesion on Contact of a Pressurized Blister With a Flat Surface
,”
Int. J. Adhes. Adhes.
,
23
, pp.
207
214
.
12.
Tang
,
T.
,
Jogota
,
A.
, and
Hui
,
C.-Y.
, 2005, “
Adhesion Between Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
97
, p.
074304
.
13.
Majidi
,
C.
, and
Wan
,
K.-T.
, 2010, “
Adhesion Between Thin Cylindrical Shells With Parallel Axes
,”
J. Appl. Mech.
,
77
(
5
), p.
041013
.
14.
Maugis
,
D.
, 2000,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer
,
New York
.
15.
Seifert
,
U.
, 1997, “
Configurations of Fluid Membranes and Vesicles
,”
Adv. Phys.
,
46
(
1
), pp.
1
137
.
16.
Yao
,
X.
,
Walter
,
J.
,
Burke
,
S.
,
Stewart
,
S.
,
Jericho
,
M. H.
,
Pink
,
D.
,
Hunter
,
R.
, and
Beveridge
,
T. J.
, 2002, “
Atomic Force Microscopy and Theoretical Considerations of Surface Properties and Turgor Pressures of Bacteria
,”
Colloids Surf., B
,
23
, pp.
213
230
.
17.
Tran-Son-Tay
,
R.
,
Sutera
,
S. P.
,
Zahalak
,
G. I.
, and
Rao
,
P. R.
, 1987, “
Membrane Stress and Internal Pressure in a Red Blood Cell Freely Suspended in a Shear Flow
,”
Biophys. J.
,
51
, pp.
915
924
.
18.
Lin
,
Y.
, and
Freund
,
L. B.
, 2007, “
Forced Detachment of a Vesicle in Adhesive Contact With a Substrate
,”
Int. J. Solids Struct.
,
22
, pp.
1927
1938
.
19.
Blokhius
,
E. M.
, and
Sager
,
W. F. C.
, 1999, “
Vesicle Adhesion and Microemulsion Droplet Dimerization: Small Bending Rigidity Regime
,”
J. Chem. Phys.
,
111
(
15
), pp.
7062
7074
.
20.
Lan
,
G.
,
Wolgemuth
,
C. W.
, and
Sun
,
S. X.
, 2007, “
Z-Ring Force and Cell Shape During Division in Rod-Like Bacteria
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
41
), pp.
16110
16115
.
21.
Zhao
,
L.
,
Schaefer
,
D.
,
Xu
,
H.
,
Modi
,
S.
,
LaCourse
,
W.
, and
Marten
,
M.
, 2005, “
Elastic Properties of the Cell Wall of Aspergillus Nidulans Studied With Atomic Force Microscopy
,”
Biotechnol. Prog.
,
21
(
1
), pp.
292
299
.
22.
Ghatak
,
A.
,
Mahadevan
,
L.
,
Chung
,
J. Y.
,
Chaudhury
,
M. K.
, and
Shenoy
,
V.
, 2004, “
Peeling From a Biomimetically Patterned Thin Elastic Film
,”
Proc. R. Soc. Ser. A
,
460
, pp.
2725
2735
.
23.
Wan
,
K.-T.
,
Lawn
,
B. R.
, and
Horn
,
R. G.
, 1992, “
Repulsive Interaction Between Co-Planar Cracks in the Double-Cantilever Geometry
,”
J. Mater. Res.
,
7
(
6
), pp.
1584
1588
.
24.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
25.
Cook
,
R.
,
Malkus
,
D.
,
Plesha
,
M.
, and
Witt
,
R.
, 2002,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.