In this part of the work, the Eshelby tensors of a finite spherical domain are applied to various homogenization procedures estimating the effective material properties of multiphase composites. The Eshelby tensors of a finite domain can capture the boundary effect of a representative volume element as well as the size effect of the different phases. Therefore their application to homogenization does not only improve the accuracy of classical homogenization methods, but also leads to some novel homogenization theories. This paper highlights a few of them: a refined dilute suspension method and a modified Mori–Tanaka method, the exterior eigenstrain method, the dual-eigenstrain method, which is a generalized self-consistency method, a shell model, and new variational bounds depending on the different boundary conditions. To the best of the authors’ knowledge, this is the first time that a multishell model is used to evaluate the Hashin–Shtrikman bounds for a multiple phase composite (n3), which can distinguish some of the subtleties of different microstructures.

1.
Li
,
S.
,
Sauer
,
R. A.
, and
Wang
,
G.
, 2006, “
The Eshelby Tensors in a Finite Spherical Domain—Part I: Theoretical Formulations
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
770
783
.
2.
Calvert
,
P.
, 1999, “
Nanotube Composites: A Recipe for Strength
,”
Nature (London)
0028-0836,
399
, pp.
210
211
.
3.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T. W.
, 2001, “
Advances in Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1899
1912
.
4.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2002, “
Effects of Nanotube Waviness on the Modulus of Nanotube-Reinforced Polymers
,”
Appl. Phys. Lett.
0003-6951,
80
, pp.
4647
4649
.
5.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
, 2003, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
0266-3538,
63
, pp.
1671
1687
.
6.
Shi
,
D.-L.
,
Feng
,
X.-Q.
,
Huang
,
Y.-Y.
,
Hwang
,
K.-C.
, and
Gao
,
H.
, 2004, “
The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites
,”
J. Eng. Mater. Technol.
0094-4289,
126
, pp.
250
257
.
7.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
663
671
.
8.
Ovid’ko
,
I. A.
, and
Scheinerman
,
A. G.
, 2005, “
Elastic Fields of Inclusion in Nanocomposite Solids
,”
Rev. Adv. Mater. Sci.
1606-5131,
9
, pp.
17
33
.
9.
Tanaka
,
K.
, and
Mori
,
T.
, 1972, “
Note on Volume Integrals of the Elastic Field Around an Ellipsoidal Inclusion
,”
J. Elast.
0374-3535,
2
, pp.
199
200
.
10.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
11.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials with Misfiting Inclusion
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
12.
Sauer
,
R. A.
,
Wang
,
G.
, and
Li
,
S.
, 2007, “
The Composite Eshelby Tensors and Their Application to Homogenization
,” submitted.
13.
Castles
,
R. R.
, and
Mura
,
T.
, 1985, “
The Analysis of Eigenstrains Outside of an Ellipsoidal Inclusion
,”
J. Elast.
0374-3535,
15
, pp.
27
34
.
14.
Willis
,
J. R.
, 1981, “
Variational and Related Methods for the Overall Properties of Composites
,”
Advances in Applied Mechanics
,
C. S.
Vih
, ed.,
Academic
,
New York
, Vol.
21
, pp.
1
78
.
15.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
10
, pp.
335
342
.
16.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
A Variational Approach to the Theory of the Elastic Behavior of Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
10
, pp.
343
352
.
You do not currently have access to this content.