To investigate the buckling behavior of thin and relatively thick cylindrical shape-memory shells, uniaxial compression tests are performed at a 295K initial temperature, using the CEAM/UCSD’s modified split Hopkinson bar systems and an Instron hydraulic testing machine. The quasi-static buckling response of the shells is directly observed and recorded using a digital camera with a close-up lens and two back mirrors. To document the dynamic buckling modes, a high-speed Imacon 200 framing camera is used. The shape-memory shells with an austenite-finish temperature of Af=281K, buckle gradually and gracefully in quasi-static loading, and fully recover upon unloading, showing a superelastic property, whereas when suitably annealed, the shells do not recover spontaneously upon unloading, but they do so once heated, showing a shape-memory effect. The thin shells had a common thickness of 0.125mm a common outer radius of 2.25mm (i.e., a common radius, R, to thickness, t, ratio, Rt, of 18). A shell with the ratio of length, L, to diameter, D(LD) of 1.5 buckled under a quasi-static load by forming a nonsymmetric chessboard pattern, while with a LD of 1.95 the buckling started with the formation of symmetrical rings which then changed into a nonsymmetric chessboard pattern. A similar buckling mode is also observed under a dynamic loading condition for a shell with LD of 2. However, thicker shells, with 0.5mm thickness and radius 4mm(Rt=8), buckled under a dynamic loading condition by the formation of a symmetrical ring pattern. For comparison, we have also tested shells of similar geometry but made of steel and aluminum. In the case of the steel shells with constrained end conditions, the buckling, which consists of nonsymmetric (no rings) folds (chessboard patterns), is sudden and catastrophic, and involves no recovery upon unloading. The gradual buckling of the shape-memory shells is associated with the stress-induced martensite formation and seems to have a profound effect on the unstable deformations of thin structures made from shape-memory alloys.

1.
Duerig
,
T. W.
,
Pelton
,
A.
, and
Stockel
,
D.
, 1999, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng., A
0921-5093,
237–275
, pp.
149
160
.
2.
Van Humbeeck
,
J.
, 1999, “
Non-Medical Applications of Shape Memory Alloys
,”
Mater. Sci. Eng., A
0921-5093,
237–275
, pp.
134
148
.
3.
Van Humbeeck
,
J.
, 2001, “
Shape Memory Alloys: A Material and a Technology
,”
Adv. Eng. Mater.
1438-1656,
3
, pp.
143
156
.
4.
Otsuka
,
K.
, and
Kakeshida
,
T.
, 2002, “
Science and Technology of Shape-Memory Alloys: New Developments
,”
MRS Bull.
0883-7694, pp.
91
100
.
5.
Saadat
,
S.
,
Salichs
,
J.
,
Noori
,
M.
,
Davood
,
H.
,
Bar-on
,
I.
,
Suzuki
,
Y.
, and
Masuda
,
A.
, 2002, “
An Overview of Vibration and Seismic Applications of NiTi Shape Memory Alloy
,”
Smart Mater. Struct.
0964-1726,
11
, pp.
218
229
.
6.
Miyazaki
,
S.
, and
Otsuka
,
K.
, 1989, “
Development of Shape Memory Alloys
,”
ISIJ Int.
0915-1559,
29
, pp.
353
377
.
7.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
, Cambridge, UK.
8.
Otsuka
,
K.
, and
Ren
,
X.
, 1999, “
Recent Developments in the Research of Shape Memory Alloys
,”
Intermetallics
0966-9795,
7
, pp.
511
528
.
9.
Otsuka
,
K.
, and
Ren
,
X.
, 1999, “
Martensitic Transformation in Nonferrous Shape Memory Alloys
,”
Mater. Sci. Eng., A
0921-5093,
273–275
, pp.
89
105
.
10.
Lu
,
T. J.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2001, “
Optimal Design of a Flexural Actuator
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
2071
2093
.
11.
McGowan
,
A. -M. R.
,
Washburn
,
A. E.
,
Horta
,
L. G.
, and
Bryant
,
R. G.
, 2002, “
Recent Results from NASA’s Morphing Project
,”
Smart Sructures and Materials: Industrial and Commercial Applications of Smart Structures Technologies
, Proc. SPIE, 4698, pp.
97
111
.
12.
Elzey
,
D. M.
,
Sofla
,
A. Y. N.
, and
Wadley
,
H. N. G.
, 2002, “
Shape-Memory-Based Multifunctional Structural Actuator Panels
,” Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, Proc. SPIE,
4698
, pp.
192
200
.
13.
Thompson
,
S. P.
, and
Loughlan
,
J.
, 2000, “
The Control of the Post-Buckling Response in Thin Composite Plates Using Smart Technology
,”
Thin-Walled Struct.
0263-8231,
36
, pp.
231
263
.
14.
Abramowicz
,
W.
, and
Jones
,
N.
, 1984, “
Dynamic Axial Crushing of Circular Tubes
,”
Int. J. Impact Eng.
0734-743X,
2
, pp.
263
281
.
15.
Jones
,
N.
, 1989,
Structural Impact
,
Cambridge University Press
, Cambridge, UK.
16.
Reid
,
S. R.
, 1993, “
Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
1035
1052
.
17.
Singer
,
J.
,
Arbocz
,
J.
, and
Weller
,
T.
, 1998,
Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structures
,
Wiley
, New York.
18.
Seitzberger
,
M.
,
Rammerstorfer
,
F. G.
,
Gradinger
,
R.
,
Degischer
,
H. P.
,
Blaimschein
,
M.
, and
Walch
,
C.
, 2000, “
Experimental Studies on the Quasi-Static Axial Crushing of Steel Columns Filled with Aluminum Foam
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
4125
4147
.
19.
Alghamdi
,
A. A. A.
, 2001, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
0263-8231,
39
, pp.
189
213
.
20.
Suzuki
,
S.
,
Urushiyama
,
Y.
, and
Taya
,
M.
, 2004, “
Energy Absorption Material Using Buckling Strength of Shape Memory Alloy Plate
,”
Smart Structures and Materials: Active Materials: Behavior and Mechanics
, Proc. SPIE, 5387, pp.
218
226
.
21.
Ogawa
,
K.
, 1988, “
Characteristics of Shape Memory Alloy at High Strain Rate
,”
J. Phys. C
0022-3719,
3
, pp.
115
120
.
22.
Ogawa
,
K.
, 1991, “
Dynamic Behavior of Shape Memory Material
,”
J. Phys.: Condens. Matter
0953-8984,
3
, pp.
215
221
.
23.
Chen
,
W. W.
,
Wu
,
Q.
,
Kang
,
J. H.
, and
Winfree
,
N. A.
, 2001, “
Compressive Superelastic Behavior of a NiTi Shape Memory Alloy at Strain Rates of 0.001-750S−1
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
8989
8998
.
24.
Liu
,
Y.
,
Li
,
Y.
, and
Ramesh
,
K. T.
, 2002, “
Rate Dependence of Deformation Mechanisms in Shape-Memory Alloys
,”
Philos. Mag. A
0141-8610,
82
, pp.
2461
2473
.
25.
Liu
,
Y.
,
Li
,
Y.
,
Xie
,
Z.
, and
Ramesh
,
K. T.
, 2002, “
Dynamic Deformation of Shape-Memory Alloys: Evidence of Domino Detwinning
?”
Philos. Mag. Lett.
0950-0839,
82
, pp.
511
517
.
26.
Nemat-Nasser
,
S.
,
Choi
,
J. Y.
,
Guo
,
W. -G.
,
Isaacs
,
J. B.
, and
Taya
,
M.
, 2005, “
High Strain-Rate, Small Strain Response of a NiTi Shape-Memory Alloy
,”
J. Eng. Mater. Technol.
0094-4289,
127
, pp.
1
7
.
27.
Nemat-Nasser
,
S.
,
Choi
,
J. Y.
,
Guo
,
W. -G.
, and
Isaacs
,
J. B.
, 2005, “
Very High Strain-Rate Response of a NiTi Shape-Memory Alloy
,”
Mech. Mater.
0167-6636,
37
, pp.
287
298
.
28.
Nemat-Nasser
,
S.
, and
Choi
,
J. Y.
, 2005, “
Strain Rate Dependence of Deformation Mechanisms in a Ni-Ti-Cr Shape-Memory Alloy
,”
Acta Mater.
1359-6454,
53
, pp.
449
454
.
29.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
, 1991, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
Proc. R. Soc. London, Ser. A
1364-5021,
435
, pp.
371
391
.
30.
Nemat-Nasser
,
S.
, and
Isaacs
,
J. B.
, 1997, “
Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and Ta-W Alloys
,”
Acta Mater.
1359-6454,
45
, pp.
907
919
.
31.
Follansbee
,
P. S.
, 1985,
High Strain Rate Compression Testing
,
ASM Handbook: Mechanical Testing
,
8
,
ASM
, Materials Park, OH, pp.
198
203
.
32.
Nemat-Nasser
,
S.
, 2000,
Recovery Hopkinson Bar Technique
.
ASM Handbook: Mechanical Testing and Evaluation
,
8
,
ASM
, Materials Park, OH, pp.
477
487
.
33.
Nemat-Nasser
,
S.
, and
Guo
,
W. -G.
, 2006, “Superelastic and Cyclic Response of NiTi SMA at Various Strain Rates and Temperatures,” Mech. Mater. (to be published).
You do not currently have access to this content.