We investigate the classic (inverse) problem concerned with the design of so-called harmonic shapes for an elastic material undergoing finite plane deformations. In particular, we show how to identify such shapes for a particular class of compressible hyperelastic materials of harmonic type. The “harmonic condition,” in which the sum of the normal stresses in the original stress field remains unchanged everywhere after the introduction of the harmonic hole or inclusion, is imposed on the final stress field. Using complex variable techniques, we identify particular harmonic shapes arising when the material is subjected nonuniform (remote) loading and discuss conditions for the existence of such shapes.

1.
Cherepanov
,
G. P.
, 1974, “
Inverse Problem of the Plane Theory of Elasticity
,”
Prikl. Mat. Mekh.
0032-8235
38
, pp.
963
979
.
2.
Mansfield
,
E. H.
, 1953, “
Neutral Holes in Plane Sheet—Reinforced Holes Which Are Elastically Equivalent to the Uncut Sheet
,”
Q. J. Mech. Appl. Math.
0033-5614
4
, pp.
370
378
.
3.
Bjorkman
,
G. S.
, Jr.
, and
Richards
,
R.
, Jr.
, 1976, “
Harmonic Holes—An Inverse Problem in Elasticity
,”
ASME J. Appl. Mech.
0021-8936
43
, pp.
414
418
.
4.
Richards
,
R.
, Jr.
, and
Bjorkman
,
G. S.
, Jr.
, 1980, “
Harmonic Shapes and Optimum Design
,”
J. Eng. Mech. Div.
0044-7951, Proc. ASCE,
106
(
EM6
), pp.
1125
-
1134
.
5.
Wang
,
G. F.
,
Schiavone
,
P.
, and
Ru
,
C-Q.
, 2004, “
Harmonic Shapes in Finite Elasticity
” (submitted).
6.
Bjorkman
,
G. S.
, Jr.
, and
Richards
,
R.
, Jr.
, 1979, “
Harmonic Holes for Nonconstant Fields
,”
ASME J. Appl. Mech.
0021-8936
46
, pp.
573
576
.
7.
John
,
F.
, 1960, “
Plane Strain Problems For a Perfectly Elastic Material of Harmonic Shape
.”
Commun. Pure Appl. Math.
0010-3640
XIII
, pp.
239
290
.
8.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1975, “
On the Singularity Induced by Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics
,”
Int. J. Solids Struct.
0020-7683
11
, pp.
1173
1201
.
9.
Varley
,
E.
, and
Cumberbatch
,
E.
, 1980, “
Finite Deformation of Elastic Material Surrounding Cylindrical Holes
,”
J. Elast.
0374-3535
10
, pp.
341
405
.
10.
Li
,
X.
, and
Steigmann
,
D. J.
, 1993, “
Finite Plane Twist of an Annular Membrane
,”
Q. J. Mech. Appl. Math.
0033-5614
46
, pp.
601
625
.
11.
Ru
,
C. Q.
, 2002, “
On Complex-Variable Formulation For Finite Plane Elastostatics of Harmonic Materials
,”
Acta Mech.
0001-5970
156
, pp.
219
-
234
.
You do not currently have access to this content.