We investigate the classic (inverse) problem concerned with the design of so-called harmonic shapes for an elastic material undergoing finite plane deformations. In particular, we show how to identify such shapes for a particular class of compressible hyperelastic materials of harmonic type. The “harmonic condition,” in which the sum of the normal stresses in the original stress field remains unchanged everywhere after the introduction of the harmonic hole or inclusion, is imposed on the final stress field. Using complex variable techniques, we identify particular harmonic shapes arising when the material is subjected nonuniform (remote) loading and discuss conditions for the existence of such shapes.
Issue Section:
Technical Papers
1.
Cherepanov
, G. P.
, 1974, “Inverse Problem of the Plane Theory of Elasticity
,” Prikl. Mat. Mekh.
0032-8235 38
, pp. 963
–979
.2.
Mansfield
, E. H.
, 1953, “Neutral Holes in Plane Sheet—Reinforced Holes Which Are Elastically Equivalent to the Uncut Sheet
,” Q. J. Mech. Appl. Math.
0033-5614 4
, pp. 370
–378
.3.
Bjorkman
, G. S.
, Jr., and Richards
, R.
, Jr., 1976, “Harmonic Holes—An Inverse Problem in Elasticity
,” ASME J. Appl. Mech.
0021-8936 43
, pp. 414
–418
.4.
Richards
, R.
, Jr., and Bjorkman
, G. S.
, Jr., 1980, “Harmonic Shapes and Optimum Design
,” J. Eng. Mech. Div.
0044-7951, Proc. ASCE, 106
(EM6
), pp. 1125
-1134
.5.
Wang
, G. F.
, Schiavone
, P.
, and Ru
, C-Q.
, 2004, “Harmonic Shapes in Finite Elasticity
” (submitted).6.
Bjorkman
, G. S.
, Jr., and Richards
, R.
, Jr., 1979, “Harmonic Holes for Nonconstant Fields
,” ASME J. Appl. Mech.
0021-8936 46
, pp. 573
–576
.7.
John
, F.
, 1960, “Plane Strain Problems For a Perfectly Elastic Material of Harmonic Shape
.” Commun. Pure Appl. Math.
0010-3640 XIII
, pp. 239
–290
.8.
Knowles
, J. K.
, and Sternberg
, E.
, 1975, “On the Singularity Induced by Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics
,” Int. J. Solids Struct.
0020-7683 11
, pp. 1173
–1201
.9.
Varley
, E.
, and Cumberbatch
, E.
, 1980, “Finite Deformation of Elastic Material Surrounding Cylindrical Holes
,” J. Elast.
0374-3535 10
, pp. 341
–405
.10.
Li
, X.
, and Steigmann
, D. J.
, 1993, “Finite Plane Twist of an Annular Membrane
,” Q. J. Mech. Appl. Math.
0033-5614 46
, pp. 601
–625
.11.
Ru
, C. Q.
, 2002, “On Complex-Variable Formulation For Finite Plane Elastostatics of Harmonic Materials
,” Acta Mech.
0001-5970 156
, pp. 219
-234
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.