0
Select Articles

The True Harnessing of Steam PUBLIC ACCESS

A Club of Professional Men in New York City Became America's Mechanical Brain Trust

[+] Author Notes

John Varrasi is a senior writer in the Public Information Department of ASME in New York.

Mechanical Engineering 127(01), 46-48 (Jan 01, 2005) (3 pages) doi:10.1115/1.2005-JAN-6

This article discusses that although it remains the worst maritime disaster in the US history, the Sultana explosion was not an isolated incident in the United States. Boiler explosions occurred with alarming frequency, not only on board steamboats, but also in factories, mines, sawmill, and woodworking shops. Legend has it that the group came together expressly to address the problem of unsafe boilers, but the initial objectives of ASME were modest. The founders were seeking a reliable system for technical information exchange as well as a social setting. The publication of the first ASME Boiler Code in 1914 was a symbolic moment in the history of the Society, an event that would help define the organization and contribute to its stature and importance in the mechanical engineering community for decades to follow. Ninety years later, the Society today has approximately 3400 active volunteers working on committees that combine to issue more than 600 standards. The standards detail the proper dimensions of a wide range of manufactured objects, from pressure vessels and piping to screw threads. However varied they are, they serve a single purpose: to make sure that all the pieces fit and hold together safely, even under pressure.

On April 27, 1865, the steamship Sultana was chugging up the Mississippi with m ore than 2,200 people on board. At 3 a.m., with the boat situated about seven miles north of Memphis, Term., three of the four boilers powering the craft exploded. The violent explosions caused a fire, and within 15 minutes the Sultana burned to the waterline. More than 1,500 people died.

The cause of the explosion was never determined, and a nation far too preoccupied with post-Civil War reconstruction and rising industrialization cared little about a full-scale investigation. Since consistent operating guidelines and inspections for steam pressure systems were virtually nonexistent in this period of fi-enetic industrial activity and commercialism, many boilers in use were unsafe.

Although it remains the worst maritime disaster in the nation's history, the Sultana explosion was not an isolated incident in the United States. Boiler explosions occurred with alarming frequency, not only on board steamboats, but also in factories, mines, sawmills, and woodworking shops. There were 441 explosions during 1867-1868, according to History of the ASME Boiler Code by Arthur M. Greene, Jr.

One hundred fifty-nine boiler explosions occurred in 1880, the year that a small group of men assembled in New York City to found the American Society of Mechanical Engineers.

Legend has it that the group came together expressly to address the problem of unsafe boilers, but the initial objectives of ASME were modest. The founders were seeking a reliable system for technical information exchange as well as a social setting. The organization was established as a union of men with like-minded interests and career pursuits-a professional club patterned after the political leagues, auxiliaries, and other institutions that were common in American cities at the time. ASME's founders desired the same level of specialized professional standing available to civil engineers, who formed the American Society of Civil Engineers sometime in 1852, and to mining engineers, who organized the American Institute of Mining Engineers in 1871.

ASME's founders were prominent machine builders and technical innovators. Erasmus Darwin Leavitt, Jr., invented more than 50 gears, pumps, and other mechanical components, and advanced the understanding of economic efficiency in pumping engines. Henry R. Worthington was another pump engine designer, who built the first duplex waterworks engine and went on to found the Worthington Pump Co. in New York City. Francis A. Pratt patented milling and gear-cutting mamachines and, together with Amos Whitney, created an engine manufacturing company that remains in business today. Alexander Lyman Holley, the Society's first chairman, built steel plants from Chicago to Tray, N.Y., and came to be known as the father of American steel manufacturing.

Holley and Robert Thurston, ASME's first president, were the guiding lights of the fledgling organization. Beyond seeking an improved method of information exchange, Holley and Thurston were passionate in promoting mechanical engineering as a truly sophisticated body of scientific knowledge and as an engine for America's industrial development.

As ASME developed during the early 1880s, an increasing number of boilers were manufactured and installed to meet the needs of factory production and the fledging oil and steel industries. By 1890, there were some 100,000 boilers in service in the United States.

While boiler systems proliferated and became indispensable to the rapidly industrializing nation, unfortunately, they were not much safer. The boilers were becoming increasingly larger and more complex, and in the absence of consistent operating guidelines many users cranked up the pressure ratings in an effort to produce additional work. The steam pressure rating for a prime mover in 1890 was typically set at 80 psi, compared to 30 psi in 1850.

In ASME's first decade, more than 2,000 boilers exploded. When a fire-tube boiler in a Brockton, Mass., shoe factory exploded on March 10, 1905-killing 58 people and causing property damage in excess of $250,000-a public outcry ensued. Following yet another deadly incident in Massachusetts in December 1906, local government officials there called for immediate action.

In those years, the U.s. government was reluctant to legislate rules and regulations for industry, so the job of standardization fell to the private sector and trade groups.

Even before ASME was established in February 1880, the founders wrote papers outlining the symbiotic relationship between technical standards and a rational industrial order. They recognized the need for standard tools and machine parts, and uniform work practices ensuring reliability and some measure of predictability in machine design and mechanical production.

The Society's founders discussed standards for screw threads, and pump and valve dimensions during the organization's first meeting and, by 1885, were considering uniform methods of testing boilers.

Six months following the incident in 1906, ASME assembled a five-person Board of Boiler Rules, which drafted a brief document that was endorsed by the Massachusetts legislature. The rules specified pressure limits on boilers (cast-iron systems were limited to 25 psi) and included guidelines for the performance characteristics of plugs and rivets.

In 1914, ASME produced the first edition of the Boiler Code, Rules Jor the Construction of Stationary Boilers and Jor Allowable TMlrking Pressures. The formation of the code was no smooth process. Some engineers and company officials derided the code, complaining it was too regulatory or overly complicated. Some manufacturers of boilers were opposed to "limitations on steam pressure. Several railroad managers who protested against the ASME effort sought a different set of inspection requirements than those established for stationary systems.

A Philadelphia engineer involved in boiler manufacturing, John C. Parker, was vehement in his opposition to the code. In a letter to the Society in 1914, Parker expressed a strong protest against further backing of the propaganda for state control of b oiler design, and went on to accuse ASME of devious and underhanded dealings and attempts to sabotage his company as well as others.

In 1880, the year ASME was founded, there were 159 boiler explosions in the United States. In ASME's first decade, more than 2,000 boilers exploded. Such tragedies led the Society to institute uniform methods of testing boilers, in 1885. At right are pressure vessel and boiler code books from 1946.

Grahic Jump LocationIn 1880, the year ASME was founded, there were 159 boiler explosions in the United States. In ASME's first decade, more than 2,000 boilers exploded. Such tragedies led the Society to institute uniform methods of testing boilers, in 1885. At right are pressure vessel and boiler code books from 1946.

Explosions of boilers occurred with alarming· frequency, not only on board steamboats, but also in factories, sawmills, and woodworking establishments.

Yet, for American industry, the timing of the Boiler Code was perfect. At the turn of the century, boilers of various sizes and 'performance capabilities were entering the marketplace, including in the power stations of New York's subway system. In addition, advances in materials were allowi~ g the design of boilers featuring su perheated steam capability.

Mass production of boilers was in full swing. The publication of the first ASME Boiler Code in 1914 was a symbolic moment in the history oCthe Society, an event that would help define the organization and contribute to its stature and importance in the mechanical engineering conununity for decades to follow.

Ninety years later, the Society today has approximately 3,400 active volu nteers working on committees that combine to issue more than 600 standards. The standards detail the proper dimensions of a wide range of manufactured objects, from pressure vessels and piping to screw threads. However varied they are, they serve a single purpose: to make sure that all the pieces fit and hold together safely, even under pressure.

Copyright © 2005 by ASME
View article in PDF format.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In